Effect of dopant concentration and annealing temperature on electric and magnetic properties of lanthanum substituted CoFe2O4 nanoparticles for potential use in 5G wireless communication systems

[1]  M. Iqbal,et al.  Impact of Lanthanum-Doping on the Physical and Electrical Properties of Cobalt Ferrites , 2021, Journal of Superconductivity and Novel Magnetism.

[2]  A. Sun,et al.  Structural, morphological and magnetic properties of Ni–Cu–Co ferrites by the Sm3+ ions substitution , 2020 .

[3]  M. Jothibas,et al.  Impact of lanthanum ions on magnetic and dielectric properties of cobalt nanoferrites , 2020, Journal of Materials Science: Materials in Electronics.

[4]  M. Shkir,et al.  A structural, elastic, mechanical, spectroscopic, thermodynamic, and magnetic properties of polymer coated CoFe2O4 nanostructures for various applications , 2020 .

[5]  C. Bergmann,et al.  Lanthanum-doped spinel cobalt ferrite (CoFe2O4) nanoparticles for environmental applications , 2020 .

[6]  Vinod Kumar,et al.  Structural, magnetic and dielectric properties of lanthanum substituted Mn0.5Zn0.5Fe2O4 , 2019, Ceramics International.

[7]  Nguyen Thi To Loan,et al.  CoFe2O4 Nanomaterials: Effect of Annealing Temperature on Characterization, Magnetic, Photocatalytic, and Photo-Fenton Properties , 2019 .

[8]  C. Ramana,et al.  Improved magnetostrictive properties of cobalt ferrite (CoFe2O4) by Mn and Dy co-substitution for magneto-mechanical sensors , 2019, Journal of Applied Physics.

[9]  T. Meaz,et al.  Structural, thermal and ferrimagnetic studies of the as-fabricated La3+-doped Co-nano-spinels , 2019, Journal of Physics: Conference Series.

[10]  J. S. Ghodake,et al.  Effect of La3+ substitution on structural and magnetic parameters of Ni–Cu–Zn nano-ferrites , 2019, Journal of Nanostructure in Chemistry.

[11]  K. L. Routray,et al.  Rare-earth (La3+) substitution induced changes in the structural, dielectric and magnetic properties of nano-CoFe2O4 for high-frequency and magneto-recording devices , 2019, Applied Physics A.

[12]  A. Nandiyanto,et al.  How to Read and Interpret FTIR Spectroscope of Organic Material , 2019, Indonesian Journal of Science and Technology.

[13]  A. Baykal,et al.  Effect of Nb3+ Substitution on the Structural, Magnetic, and Optical Properties of Co0.5Ni0.5Fe2O4 Nanoparticles , 2019, Nanomaterials.

[14]  R. Choudhary,et al.  Fabrication and impedance spectroscopy of lead free magneto-electric compound: Bi(Ca0.25Ti0.25Fe0.5)O3 , 2019, Applied Physics A.

[15]  S. Kubrin,et al.  Evidence of enhanced ferromagnetic nature and hyperfine interaction studies of Ce-Sm doped Co-Ni ferrite nanoparticles for microphone applications , 2018, Ceramics International.

[16]  S. Aktürk,et al.  Lanthanum ion substituted cobalt ferrite nanoparticles and their hyperthermia efficiency , 2018, Journal of Magnetism and Magnetic Materials.

[17]  Kon-Well Wang,et al.  Improving soft magnetic properties of Mn-Zn ferrite by rare earth ions doping , 2018 .

[18]  S. Kalainathan,et al.  A study on dielectric and magnetic properties of lanthanum substituted cobalt ferrite , 2017 .

[19]  L. K. Chuan,et al.  Influence of La3+ Substitution on Structure, Morphology and Magnetic Properties of Nanocrystalline Ni-Zn Ferrite , 2017, PloS one.

[20]  M. Yamaguchi,et al.  Magnetic Nanoferrites for RF CMOS: Enabling 5G and Beyond , 2017 .

[21]  J. Vijaya,et al.  Spinel Ferrite Nanoparticles: Synthesis, Crystal Structure, Properties, and Perspective Applications , 2016 .

[22]  J. Havlica,et al.  Anneal-tuned structural, dielectric and electrical properties of ZnFe2O4 nanoparticles synthesized by starch-assisted sol–gel auto-combustion method , 2016, Journal of Materials Science: Materials in Electronics.

[23]  M. R. Toroghinejad,et al.  Synthesis of single-phase cobalt ferrite nanoparticles via a novel EDTA/EG precursor-based route and their magnetic properties , 2015 .

[24]  S. M. Ridha X-ray Studies and Electrical Properties of the Zinc-substituted Copper Nanoferrite Synthesized by Sol-gel Method , 2015 .

[25]  S. Singh,et al.  Chemical synthesis and magnetic investigations on Cr3+ substituted Zn-ferrite superparamagnetic nano-particles , 2015 .

[26]  S. Singh,et al.  Synthesis, structural and dielectric properties of Cr3+ substituted Fe3O4 nano-particles , 2014 .

[27]  S. Nithiyanantham,et al.  Electrical Properties of Nanophase Ferrites Doped with Rare Earth Ions , 2014 .

[28]  A. Lemaître,et al.  Ultrahigh Q-frequency product for optomechanical disk resonators with a mechanical shield , 2013, 1309.4971.

[29]  M. Zhang,et al.  Size Effects on Magnetic Properties of Prepared by Sol-Gel Method , 2013 .

[30]  E. Pervaiz,et al.  Influence of Rare Earth (Gd3+) on Structural, Gigahertz Dielectric and Magnetic Studies of Cobalt ferrite , 2013 .

[31]  Lawrence Kumar,et al.  Effect of La3+ substitution on the structural and magnetocrystalline anisotropy of nanocrystalline cobalt ferrite (CoFe2−xLaxO4) , 2012 .

[32]  Raul Valenzuela,et al.  Novel Applications of Ferrites , 2012 .

[33]  M. L. Rao,et al.  AC impedance studies on LiFe5−xMnxO8 ferrites , 2012 .

[34]  M. Siddique,et al.  Reduced conductivity and enhancement of Debye orientational polarization in lanthanum doped cobalt ferrite nanoparticles , 2011 .

[35]  Khalid Mujasam Batoo Study of dielectric and impedance properties of Mn ferrites , 2011 .

[36]  Pawan Kumar,et al.  Effect of La3+ doping on the electric, dielectric and magnetic properties of cobalt ferrite processed by co-precipitation technique , 2010 .

[37]  G. Donohoe,et al.  High-Quality Factor Ni-Zn Ferrite Planar Inductor , 2010, IEEE Transactions on Magnetics.

[38]  H. A. Ahangar,et al.  Simple synthesis and characterization of cobalt ferrite nanoparticles by a thermal treatment method , 2010 .

[39]  R. Bhowmik,et al.  Structural phase stability and magnetism in Co2FeO4 spinel oxide , 2008, 0810.0449.

[40]  C. Vittoria,et al.  Ferrite-Coupled Line Circulator Simulations For Application at X-Band Frequency , 2007, IEEE Transactions on Magnetics.

[41]  S. Feng,et al.  Magnetic properties of Re-substituted Ni–Mn ferrite nanocrystallites , 2007 .

[42]  S. Tretyakov,et al.  Magnetodielectric Substrates in Antenna Miniaturization: Potential and Limitations , 2006, IEEE Transactions on Antennas and Propagation.

[43]  Chunhua Yan,et al.  Nanostructure magneto-optical thin films of rare earth (RE=Gd,Tb,Dy) doped cobalt spinel by sol–gel synthesis , 1999 .