A continuum framework for mechanics of fractal materials I: from fractional space to continuum with fractal metric

This paper is devoted to the mechanics of fractally heterogeneous media. A model of fractal continuum with a fractional number of spatial degrees of freedom and a fractal metric is suggested. The Jacobian matrix of the fractal continuum deformation is defined and the kinematics of deformations is elucidated. The symmetry of the Cauchy stress tensor for continua with the fractal metric is established. A homogenization framework accounting for the connectivity, topological, and metric properties of fractal domains in heterogeneous materials is developed. The mapping of mechanical problems for fractal media into the corresponding problems for the fractal continuum is discussed. Stress and strain distributions in elastic fractal bars are analyzed. An approach to fractal bar optimization is proposed. Some features of acoustic wave propagation and localization in fractal media are briefly highlighted.

[1]  J. Bory‐Reyes,et al.  Laplacian decomposition of vector fields on fractal surfaces , 2008, Journal of Mathematical Analysis and Applications.

[2]  A. Balankin,et al.  Hydrodynamics of fractal continuum flow. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  P. Donato,et al.  An introduction to homogenization , 2000 .

[4]  A. Balankin,et al.  Map of fluid flow in fractal porous medium into fractal continuum flow. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Y. Xiaojun,et al.  Advanced Local Fractional Calculus and Its Applications , 2012 .

[6]  M. Mofid,et al.  Tensile fracture behavior of heterogeneous materials based on fractal geometry , 2006 .

[7]  Pietro Cornetti,et al.  A fractional calculus approach to the description of stress and strain localization in fractal media , 2002 .

[8]  F. Mulargia,et al.  Pernicious effect of physical cutoffs in fractal analysis. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  E. Cuevas,et al.  Localization in fractal and multifractal media , 2010, 1005.0266.

[10]  M. Ostoja-Starzewski,et al.  Fractal solids, product measures and fractional wave equations , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  Daniel Aubram,et al.  Differential geometry applied to continuum mechanics , 2009 .

[12]  Gianluca Calcagni,et al.  Geometry and field theory in multi-fractional spacetime , 2011, 1107.5041.

[13]  Generalized Mandelbrot rule for fractal sections. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[14]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[15]  D. Spencer,et al.  The meaning of the vector Laplacian , 1953 .

[16]  J. Marsden,et al.  COVARIANT BALANCE LAWS IN CONTINUA WITH MICROSTRUCTURE , 2008, 0811.2234.

[17]  Pietro Cornetti,et al.  A fractal theory for the mechanics of elastic materials , 2004 .

[18]  A. Balankin,et al.  Reply to "Comment on 'Hydrodynamics of fractal continuum flow' and 'Map of fluid flow in fractal porous medium into fractal continuum flow'". , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Umberto Mosco INVARIANT FIELD METRICS AND DYNAMICAL SCALINGS ON FRACTALS , 1997 .

[20]  Feng Yang,et al.  Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China , 2014 .

[21]  C. L. Martínez-González,et al.  Random walk in chemical space of Cantor dust as a paradigm of superdiffusion. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Arash Yavari,et al.  A geometric theory of thermal stresses , 2009, 0912.1298.

[24]  A. Balankin Physics of fracture and mechanics of self-affine cracks , 1997 .

[25]  M. Schmutz The Hausdorff dimension as an intrinsic metric property of fractals , 1986 .

[26]  Arash Yavari,et al.  A Geometric Theory of Growth Mechanics , 2009, J. Nonlinear Sci..

[27]  A. Balankin,et al.  Phosphate Alumina Process by Sol−Gel: Textural and Fractal Properties , 2003 .

[28]  C. Drapaca,et al.  A Fractional Model of Continuum Mechanics , 2012 .

[29]  P. Topping Lectures on the Ricci Flow , 2006 .

[30]  Pierre Lefebvre,et al.  Fractional‐dimensional calculation of exciton binding energies in semiconductor quantum wells and quantum‐well wires , 1993 .

[31]  A. Carpinteri,et al.  Fractals to Model Hierarchical Biomaterials , 2008 .

[32]  A. Balankin,et al.  Electromagnetic fields in fractal continua , 2013 .

[33]  Alain Goriely,et al.  Riemann–Cartan Geometry of Nonlinear Dislocation Mechanics , 2012 .

[34]  A. Neimark A new approach to the determination of the surface fractal dimension of porous solids , 1992 .

[35]  Martin Thullner,et al.  The relationship between fractal properties of solid matrix and pore space in porous media , 2005 .

[36]  Vasily E. Tarasov,et al.  Fractional Vector Calculus , 2010 .

[37]  W. Chen Time-space fabric underlying anomalous diffusion , 2005, math-ph/0505023.

[38]  B. V. van Tiggelen,et al.  Weak localization of seismic waves. , 2004, Physical review letters.

[39]  J. Gouyet Physics and Fractal Structures , 1996 .

[40]  M. Sahimi,et al.  Use of microseismicity for determining the structure of the fracture network of large-scale porous media , 2013 .

[41]  Q. Naqvi,et al.  Electromagnetic Fields and Waves in Fractional Dimensional Space , 2012 .

[42]  O. K. Panagouli,et al.  Mechanics on fractal bodies. Data compression using fractals , 1997 .

[43]  He Excitons in anisotropic solids: The model of fractional-dimensional space. , 1991, Physical review. B, Condensed matter.

[44]  C. L. Martínez-González,et al.  Fractal features of a crumpling network in randomly folded thin matter and mechanics of sheet crushing. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  O. Agrawal,et al.  A scaling method and its applications to problems in fractional dimensional space , 2009 .

[46]  D. Rayneau-Kirkhope,et al.  Optimization of fractal space frames under gentle compressive load. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  G. Calcagni Diffusion in multiscale spacetimes. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  A. Vulpiani,et al.  Reaction spreading on percolating clusters. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  I. Procaccia,et al.  Diffusion on fractals. , 1985, Physical review. A, General physics.

[50]  Gabor Korvin,et al.  Fractal models in the earth sciences , 1992 .

[51]  V. E. Tarasov Continuous Medium Model for Fractal Media , 2005, cond-mat/0506137.

[52]  Frank H. Stillinger,et al.  Axiomatic basis for spaces with noninteger dimension , 1977 .

[53]  Alexander S. Balankin,et al.  Stresses and strains in a deformable fractal medium and in its fractal continuum model , 2013 .

[54]  Pietro Cornetti,et al.  Static‐kinematic fractional operators for fractal and non‐local solids , 2009 .

[55]  M. Sahimi,et al.  Renormalization group analysis and numerical simulation of propagation and localization of acoustic waves in heterogeneous media , 2007 .

[56]  A. Matos-Abiague,et al.  Excitonic polarons in confined systems , 2004 .

[57]  Paul N. Stavrinou,et al.  Equations of motion in a non-integer-dimensional space , 2004 .

[58]  F. Borodich,et al.  Scaling of mathematical fractals and box-counting quasi-measure , 2010 .

[59]  G. E. Mase,et al.  Continuum Mechanics for Engineers , 1991 .

[60]  K Oleschko,et al.  Fractal scattering of microwaves from soils. , 2002, Physical review letters.

[61]  V. E. Tarasov Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media , 2011 .

[62]  Alexander S. Balankin,et al.  Physics in space–time with scale-dependent metrics , 2013 .

[63]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[64]  J. Kelly,et al.  Fractal ladder models and power law wave equations. , 2009, The Journal of the Acoustical Society of America.