Evidence of accumulation and elimination of inorganic contaminants from the lachrymal salt glands of leatherback sea turtles (Dermochelys coriacea).

[1]  M. Girondot,et al.  The current situation of inorganic elements in marine turtles: A general review and meta-analysis. , 2017, Environmental pollution.

[2]  J. Davenport Crying a river: how much salt-laden jelly can a leatherback turtle really eat? , 2017, Journal of Experimental Biology.

[3]  F. Leusch,et al.  The current state and future directions of marine turtle toxicology research. , 2016, Environment international.

[4]  Justin R. Perrault Mercury and selenium ingestion rates of Atlantic leatherback sea turtles (Dermochelys coriacea): a cause for concern in this species? , 2014, Marine environmental research.

[5]  J. Wyneken,et al.  Seasonal trends in nesting leatherback turtle (Dermochelys coriacea) serum proteins further verify capital breeding hypothesis , 2014, Conservation physiology.

[6]  A. Lehner,et al.  Essential, trace and toxic element concentrations in the liver of the world's largest bony fish, the ocean sunfish (Mola mola). , 2014, Marine pollution bulletin.

[7]  J. Lynch Exposure to and Effects of Persistent Organic Pollutants | NIST , 2013 .

[8]  Marie-Pierre Ryser-Degiorgis,et al.  Wildlife health investigations: needs, challenges and recommendations , 2013, BMC Veterinary Research.

[9]  J. Wyneken,et al.  Mercury and selenium concentrations in leatherback sea turtles (Dermochelys coriacea): population comparisons, implications for reproductive success, hazard quotients and directions for future research. , 2013, The Science of the total environment.

[10]  S. Fossette,et al.  Leatherback Turtles Are Capital Breeders: Morphometric and Physiological Evidence from Longitudinal Monitoring , 2013, Physiological and Biochemical Zoology.

[11]  A. Williard Physiology as Integrated Systems , 2013 .

[12]  D. Pauly,et al.  Resource Requirements of the Pacific Leatherback Turtle Population , 2012, PloS one.

[13]  Justin R. Perrault Assessment of Mercury and Selenium Concentrations in Tissues of Stranded Leatherback Sea Turtles (Dermochelys coriacea) , 2012 .

[14]  W. Bowen,et al.  Jellyfish Support High Energy Intake of Leatherback Sea Turtles (Dermochelys coriacea): Video Evidence from Animal-Borne Cameras , 2012, PloS one.

[15]  C. Cheng,et al.  Environmental contaminants , 2011, Spermatogenesis.

[16]  J. Wyneken,et al.  Why are hatching and emergence success low? Mercury and selenium concentrations in nesting leatherback sea turtles (Dermochelys coriacea) and their young in Florida. , 2011, Marine pollution bulletin.

[17]  P. Dutton,et al.  Pollutants and the health of green sea turtles resident to an urbanized estuary in San Diego, CA. , 2011, Chemosphere.

[18]  R. Poppenga,et al.  COMPARATIVE HEALTH ASSESSMENT OF WESTERN PACIFIC LEATHERBACK TURTLES (DERMOCHELYS CORIACEA) FORAGING OFF THE COAST OF CALIFORNIA, 2005–2007 , 2011, Journal of wildlife diseases.

[19]  Steve Garner,et al.  Diel foraging behavior of gravid leatherback sea turtles in deep waters of the Caribbean Sea , 2010, Journal of Experimental Biology.

[20]  Andrew E. Myers,et al.  Health Evaluation of Leatherback Turtles (Dermochelys coriacea) in the Northwestern Atlantic During Direct Capture and Fisheries Gear Disentanglement , 2010 .

[21]  Amit Kumar Sinha,et al.  Metal accumulation and metallothionein induction in the spotted dogfish Scyliorhinus canicula. , 2009, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[22]  K. Das,et al.  Maternal transfer of trace elements in leatherback turtles (Dermochelys coriacea) of French Guiana. , 2008, Aquatic toxicology.

[23]  J. Burger A framework and methods for incorporating gender-related issues in wildlife risk assessment: gender-related differences in metal levels and other contaminants as a case study. , 2007, Environmental research.

[24]  S. Gardner,et al.  Metal profiles used as environmental markers of green turtle (Chelonia mydas) foraging resources. , 2007, The Science of the total environment.

[25]  R. Poppenga,et al.  BLOOD VALUES IN FREE-RANGING NESTING LEATHERBACK SEA TURTLES (DERMOCHELYS CORIACEA) ON THE COAST OF THE REPUBLIC OF GABON , 2006, Journal of zoo and wildlife medicine : official publication of the American Association of Zoo Veterinarians.

[26]  J. Forrest,et al.  Mercury toxicity in the shark (Squalus acanthias) rectal gland: apical CFTR chloride channels are inhibited by mercuric chloride. , 2006, Journal of experimental zoology. Part A, Comparative experimental biology.

[27]  S. Gardner,et al.  Heavy Metal Accumulation in Four Species of Sea Turtles from the Baja California Peninsula, Mexico , 2006, Biometals.

[28]  Cassondra L. Williams,et al.  Bioenergetics and diving activity of internesting leatherback turtles Dermochelys coriacea at Parque Nacional Marino Las Baulas, Costa Rica , 2005, Journal of Experimental Biology.

[29]  Rudolfs K. Zalups,et al.  Molecular and ionic mimicry and the transport of toxic metals. , 2005, Toxicology and applied pharmacology.

[30]  R. D. Day,et al.  Monitoring mercury in the loggerhead sea turtle, Caretta caretta. , 2005, Environmental science & technology.

[31]  P. Lutz,et al.  Physiological and Genetic Responses to Environmental Stress , 2002 .

[32]  R. Reina,et al.  Salt and water regulation by the leatherback sea turtle Dermochelys coriacea. , 2002, The Journal of experimental biology.

[33]  S. Eckert Distribution of juvenile leatherback sea turtle Dermochelys coriacea sightings , 2002 .

[34]  L. Ma,et al.  Arsenic Background Concentrations in Florida, U.S.A. Surface Soils: Determination and Interpretation , 2001 .

[35]  J. Burger,et al.  Metals in Herring and Great Black-Backed Gulls from the New York Bight: the Role of Salt Gland in Excretion , 2000 .

[36]  S. Tanabe,et al.  Arsenic accumulation in three species of sea turtles , 2000, Biometals.

[37]  S. Tanabe,et al.  Growth-Related Changes in Heavy Metal Accumulation in Green Turtle (Chelonia mydas) from Yaeyama Islands, Okinawa, Japan , 2000, Archives of environmental contamination and toxicology.

[38]  S. Tanabe,et al.  Species-Specific Distribution of Heavy Metals in Tissues and Organs of Loggerhead Turtle (Caretta caretta) and Green Turtle (Chelonia mydas) from Japanese Coastal Waters , 2000 .

[39]  S. Tanabe,et al.  Mercury and cadmium in common cormorants (Phalacrocorax carbo). , 2000, Environmental pollution.

[40]  J. Burger,et al.  Metals in Laysan Albatrosses from Midway Atoll , 2000, Archives of environmental contamination and toxicology.

[41]  J. Smits,et al.  Effect of cadmium on Pekin duck total body water, water flux, renal filtration, and salt gland function. , 2000, Journal of toxicology and environmental health. Part A.

[42]  P. Bustamante,et al.  Bioaccumulation of cadmium, copper and zinc in some tissues of three species of marine turtles stranded along the French Atlantic coasts , 1999 .

[43]  Howard Hu,et al.  Bone lead as a biological marker in epidemiologic studies of chronic toxicity: conceptual paradigms. , 1998, Environmental health perspectives.

[44]  Andrew N. Rowan Guide for the Care and Use of Laboratory Animals , 1996 .

[45]  P. Lutz,et al.  Physiologic and clinicopathologic effects of crude oil on loggerhead sea turtles , 1995, Archives of environmental contamination and toxicology.

[46]  Ross A. Jeffree,et al.  Absorption of divalent trace metals as analogues of calcium by Australian freshwater bivalves: an explanation of how water hardness reduces metal toxicity , 1994 .

[47]  F. Leighton The toxicity of petroleum oils to birds , 1993 .

[48]  F. Epstein,et al.  The effect of mercury on chloride secretion in the shark (Squalus acanthias) rectal gland. , 1992, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology.

[49]  Curtis C. Travis,et al.  Estimating the mean of data sets with nondetectable values , 1990 .

[50]  Alan T. Marshall Intracellular and luminal ion concentrations in sea turtle salt glands determined by x-ray microanalysis , 1989, Journal of Comparative Physiology B.

[51]  P. Lutz,et al.  Salt Gland Function in the Green Sea Turtle Chelonia Mydas , 1989 .

[52]  P. Lutz,et al.  Salt Gland Function in the Leatherback Sea Turtle, Dermochelys coriacea , 1986 .

[53]  K. Schmidt-Nielsen,et al.  The Salt‐Secreting Gland of Marine Birds , 1960, Circulation.

[54]  W. Russell,et al.  The Principles of Humane Experimental Technique , 1960 .

[55]  J. B. Pfaller,et al.  Sea turtle epibiosis , 2013 .

[56]  P. Apostoli Elemental speciation in human health risk assessment , 2006 .

[57]  A. Marshall,et al.  The duct system of the lachrymal salt gland of the green sea turtle, Chelonia mydas , 2004, Cell and Tissue Research.

[58]  J. Wyneken The anatomy of sea turtles , 2001 .

[59]  A. Pople,et al.  Trace metal concentrations in livers and kidneys of sea turtles from south-eastern Queensland, Australia , 1998 .

[60]  A. Heath,et al.  Environmental factors affecting contaminant toxicity in aquatic and terrestrial vertebrates , 1995 .

[61]  J. Burger,et al.  Tissue levels of lead in experimentally exposed herring gull (Larus argentatus) chicks. , 1990, Journal of toxicology and environmental health.

[62]  J. Burger,et al.  Comparisons of nine heavy metals in salt gland and liver of greater scaup (Aythya marila), black duck (Anas rubripes) and mallard (A. platyrhynchos). , 1985, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology.

[63]  W. Eastin,et al.  Organophosphate inhibition of avian salt gland Na, K-ATPase activity. , 1982, Comparative biochemistry and physiology. C: Comparative pharmacology.

[64]  M. Hughes Water content of the salt glands and other avian tissues. , 1974, Comparative biochemistry and physiology. A, Comparative physiology.