A stable second-order partitioned iterative scheme for freely vibrating low-mass bluff bodies in a uniform flow

Abstract We present a stable partitioned iterative scheme for solving fluid–body interaction problems at low structure-to-fluid mass ratio. The scheme relies on the so-called nonlinear interface force correction based on Aitken’s extrapolation process to stabilize the coupled partitioned system employing an arbitrary Lagrangian–Eulerian finite element framework. Approximate interface force correction is constructed through subiterations to account for the missing effects of off-diagonal Jacobian terms in the partitioned staggered scheme. Through the generalized Aitken’s geometric extrapolation process with a dynamic stabilization parameter, the interface corrections allow to satisfy the force equilibrium with arbitrary accuracy while expanding the scope of partitioned iterative schemes for fluid–structure interaction with strong added-mass effects. To assess the proposed iterative scheme against the standard strong coupling, effects of mass ratio are investigated for a freely vibrating circular cylinder. We show that our second-order scheme is stable for low mass density ratio and hence is able to handle strong added-mass effects. The numerical stability and robustness of the scheme is then demonstrated for a new application of tandem square cylinder undergoing complex wake-induced vibration and galloping.

[1]  Tayfun E. Tezduyar,et al.  Space-time finite element techniques for computation of fluid-structure interactions , 2005 .

[2]  Thomas J. R. Hughes,et al.  What are C and h ?: inequalities for the analysis and design of finite element methods , 1992 .

[3]  Sanjay Mittal,et al.  Parallel finite element computation of incompressible flows , 2009, Parallel Comput..

[4]  Rajeev K. Jaiman,et al.  Fully Coupled Fluid-Structure Interaction for Offshore Applications , 2009 .

[5]  Jiahuang Tu,et al.  Partitioned subiterative coupling schemes for aeroelasticity using combined interface boundary condition method , 2014 .

[6]  Rajeev K. Jaiman,et al.  A stable second-order scheme for fluid-structure interaction with strong added-mass effects , 2014, J. Comput. Phys..

[7]  C. Brezinski,et al.  Generalizations of Aitken's process for accelerating the convergence of sequences , 2007 .

[8]  Frederic Blom,et al.  A monolithical fluid-structure interaction algorithm applied to the piston problem , 1998 .

[9]  S. Mittal,et al.  Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements , 1992 .

[10]  T. He A Partitioned Implicit Coupling Strategy for Incompressible Flow Past an Oscillating Cylinder , 2015 .

[11]  C. Williamson,et al.  Vortex-Induced Vibrations , 2004, Wind Effects on Structures.

[12]  A. Roshko,et al.  Vortex formation in the wake of an oscillating cylinder , 1988 .

[13]  A. C. Aitken XX.—Studies in Practical Mathematics. II. The Evaluation of the Latent Roots and Latent Vectors of a Matrix , 1938 .

[14]  Trond Kvamsdal,et al.  Goal oriented error estimators for Stokes equations based on variationally consistent postprocessing , 2003 .

[15]  Peter W. Bearman,et al.  On the wake-induced vibration of tandem circular cylinders: the vortex interaction excitation mechanism , 2010, Journal of Fluid Mechanics.

[16]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[17]  van Eh Harald Brummelen,et al.  Partitioned iterative solution methods for fluid–structure interaction , 2011 .

[18]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[19]  Jørgen Fredsøe,et al.  Hydrodynamics Around Cylindrical Structures , 2006 .

[20]  van Eh Harald Brummelen,et al.  Error-amplification analysis of subiteration-preconditioned GMRES for fluid-structure interaction , 2006 .

[21]  W. Wall,et al.  Fixed-point fluid–structure interaction solvers with dynamic relaxation , 2008 .

[22]  C. Brezinski,et al.  Construction of extrapolation processes , 1991 .

[23]  Leon Bieber Numerical Methods In Engineering Applied Science , 2016 .

[24]  van Eh Harald Brummelen,et al.  The relevance of conservation for stability and accuracy of numerical methods for fluid?structure interaction , 2003 .

[25]  Yuri Bazilevs,et al.  Computational Fluid-Structure Interaction: Methods and Applications , 2013 .

[26]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[27]  Brummelen van Eh,et al.  Flux evaluation in primal and dual boundary-coupled problems , 2011 .

[28]  Yan Bao,et al.  Combined interface boundary condition method for fluid–rigid body interaction , 2012 .

[29]  Yuri Bazilevs,et al.  Free-Surface Flow and Fluid-Object Interaction Modeling With Emphasis on Ship Hydrodynamics , 2012 .

[30]  Charbel Farhat,et al.  Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity , 2006 .

[31]  Charbel Farhat,et al.  Partitioned analysis of coupled mechanical systems , 2001 .

[32]  R. Blevins,et al.  Flow-Induced Vibration , 1977 .

[33]  C. Williamson,et al.  The effect of two degrees of freedom on vortex-induced vibration at low mass and damping , 2004, Journal of Fluid Mechanics.

[34]  Fabio Nobile,et al.  Added-mass effect in the design of partitioned algorithms for fluid-structure problems , 2005 .

[35]  Thomas J. R. Hughes,et al.  The Continuous Galerkin Method Is Locally Conservative , 2000 .

[36]  T. Hughes,et al.  MULTI-DIMENSIONAL UPWIND SCHEME WITH NO CROSSWIND DIFFUSION. , 1979 .

[37]  Hermann G. Matthies,et al.  Algorithms for strong coupling procedures , 2006 .

[38]  V. Brummelen Added Mass Effects of Compressible and Incompressible Flows in Fluid-Structure Interaction , 2009 .

[39]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[40]  Charbel Farhat,et al.  Partitioned procedures for the transient solution of coupled aeroelastic problems , 2001 .

[41]  Victor M. Calo,et al.  Improving stability of stabilized and multiscale formulations in flow simulations at small time steps , 2010 .

[42]  D. Roose,et al.  Interaction between fold and Hopf curves leads to new bifurcation phenomena , 1989 .

[43]  Stefan Turek,et al.  A Monolithic FEM/Multigrid Solver for an ALE Formulation of Fluid-Structure Interaction with Applications in Biomechanics , 2006 .

[44]  J. Hyvärinen,et al.  An Arbitrary Lagrangian-Eulerian finite element method , 1998 .

[45]  Tayfun E. Tezduyar,et al.  Finite elements in fluids: Stabilized formulations and moving boundaries and interfaces , 2007 .

[46]  Mark Bull,et al.  Development of mixed mode MPI / OpenMP applications , 2001, Sci. Program..

[47]  Avram Sidi,et al.  Practical Extrapolation Methods - Theory and Applications , 2003, Cambridge monographs on applied and computational mathematics.

[48]  S. Pozza,et al.  Generalizations of Aitken's process for a certain class of sequences , 2015 .

[49]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[50]  Gustavo C. Buscaglia,et al.  Arbitrary Lagrangian-Eulerian (ALE)-Based Finite Element Methods for Rigid Solids Immersed in Fluids , 2016 .

[51]  T. Hughes,et al.  The Galerkin/least-squares method for advective-diffusive equations , 1988 .

[52]  E. Ramm,et al.  Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows , 2007 .

[53]  van Eh Harald Brummelen,et al.  An interface Newton–Krylov solver for fluid–structure interaction , 2005 .

[54]  Rajeev K. Jaiman,et al.  Transient fluid–structure interaction with non-matching spatial and temporal discretizations , 2011 .

[55]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multi-dimensional advective-diffusive systems , 1987 .

[56]  Rajeev K. Jaiman,et al.  Combined interface boundary condition method for unsteady fluid–structure interaction , 2011 .

[57]  C. Farhat,et al.  Partitioned procedures for the transient solution of coupled aroelastic problems Part I: Model problem, theory and two-dimensional application , 1995 .

[58]  Rajeev K. Jaiman,et al.  Conservative load transfer along curved fluid-solid interface with non-matching meshes , 2006, J. Comput. Phys..

[59]  D. Peric,et al.  A computational framework for fluid–structure interaction: Finite element formulation and applications , 2006 .

[60]  P. Nithiarasu,et al.  An element‐wise, locally conservative Galerkin (LCG) method for solving diffusion and convection–diffusion problems , 2008 .

[61]  Rajeev K. Jaiman,et al.  A fully implicit combined field scheme for freely vibrating square cylinders with sharp and rounded corners , 2015 .

[62]  Rajeev K. Jaiman,et al.  Added Mass and Aeroelastic Stability of a Flexible Plate Interacting With Mean Flow in a Confined Channel , 2014 .

[63]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[64]  Charles H. K. Williamson,et al.  Vortex Induced Vibration , 2001 .

[65]  A. Bokaian,et al.  Wake-induced galloping of two interfering circular cylinders , 1984, Journal of Fluid Mechanics.

[66]  Ming Zhao,et al.  Numerical simulation of vortex-induced vibration of a square cylinder at a low Reynolds number , 2013 .

[67]  F. B. Ellerby,et al.  Numerical solutions of partial differential equations by the finite element method , by C. Johnson. Pp 278. £40 (hardback), £15 (paperback). 1988. ISBN 0-521-34514-6, 34758-0 (Cambridge University Press) , 1989, The Mathematical Gazette.

[68]  Turgut Sarpkaya,et al.  A critical review of the intrinsic nature of vortex-induced vibrations , 2004 .

[69]  Peter W. Bearman,et al.  Circular cylinder wakes and vortex-induced vibrations , 2011 .