Low-discrepancy sequences using duality and global function fields

[1]  H. Niederreiter,et al.  A new construction of (t, s)-sequences and some improved bounds on their quality parameter , 2007 .

[2]  Peter Kritzer,et al.  Improved upper bounds on the star discrepancy of (t, m, s)-nets and (t, s)-sequences , 2006, J. Complex..

[3]  Wolfgang Ch. Schmid,et al.  MinT: A Database for Optimal Net Parameters , 2006 .

[4]  Harald Niederreiter,et al.  Constructions of digital nets using global function fields , 2002 .

[5]  H. Niederreiter,et al.  Rational Points on Curves Over Finite Fields: Theory and Applications , 2001 .

[6]  H. Niederreiter,et al.  Duality for digital nets and its applications , 2001 .

[7]  S. Sémirat 2-extensions with many points , 2000, math/0011067.

[8]  H. Niederreiter,et al.  Low-Discrepancy Sequences and Global Function Fields with Many Rational Places , 1996 .

[9]  Harald Niederreiter,et al.  Generalized $(t,s)$-sequences, Kronecker-type sequences, and Diophantine approximations of formal Laurent series , 1995 .

[10]  H. Niederreiter,et al.  A construction of low-discrepancy sequences using global function fields , 1995 .

[11]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[12]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[13]  H. Niederreiter Point sets and sequences with small discrepancy , 1987 .

[14]  C. Chevalley,et al.  Introduction to the theory of algebraic functions of one variable , 1951 .