An open system framework for integrating critical zone structure and function

[1]  W. Dietrich,et al.  Geomorphic transport laws for predicting landscape form and dynamics , 2013 .

[2]  H. Jenny Factors of Soil Formation: A System of Quantitative Pedology , 2011 .

[3]  Jonathan D. Phillips,et al.  Biological energy in landscape evolution , 2009, American Journal of Science.

[4]  Craig Rasmussen,et al.  Quantifying the climatic and tectonic controls on hillslope steepness and erosion rate , 2009 .

[5]  A. Kleidon Nonequilibrium thermodynamics and maximum entropy production in the Earth system , 2009, Naturwissenschaften.

[6]  J. Pelletier Quantitative Modeling of Earth Surface Processes , 2008 .

[7]  Stijn Bruers,et al.  Exergy: its potential and limitations in environmental science and technology. , 2008, Environmental science & technology.

[8]  W. Blum Forms of energy involved in soil and sediment processes , 2008 .

[9]  C. Rasmussen,et al.  Applying a Quantitative Pedogenic Energy Model across a Range of Environmental Gradients , 2007 .

[10]  D. Sparks,et al.  Soil Biogeochemical Processes within the Critical Zone , 2007 .

[11]  M. Reheis A 16-year record of eolian dust in Southern Nevada and California, USA: Controls on dust generation and accumulation , 2006 .

[12]  Brian D. Fath,et al.  Examination of ecological networks , 2006 .

[13]  Murugesu Sivapalan,et al.  Pattern, Process and Function: Elements of a Unified Theory of Hydrology at the Catchment Scale , 2006 .

[14]  M. Pace,et al.  Is Net Ecosystem Production Equal to Ecosystem Carbon Accumulation? , 2006, Ecosystems.

[15]  William E. Dietrich,et al.  Process-based model linking pocket gopher (Thomomys bottae) activity to sediment transport and soil thickness , 2005 .

[16]  Craig Rasmussen,et al.  Modeling energy inputs to predict pedogenic environments using regional environmental databases , 2005 .

[17]  Brian D. Fath,et al.  Application of thermodynamic principles in ecology , 2004 .

[18]  A. West,et al.  Tectonic and climatic controls on silicate weathering , 2004 .

[19]  C. Riebe,et al.  Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes ☆ , 2004 .

[20]  J. Ammons Soil Genesis And Classification, 5TH Edition. , 2004 .

[21]  S. Brantley,et al.  The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field? , 2003 .

[22]  C. Riebe,et al.  Strong tectonic and weak climatic control of long-term chemical weathering rates , 2001 .

[23]  M. Schulz,et al.  The effect of temperature on experimental and natural chemical weathering rates of granitoid rocks , 1999 .

[24]  Budiman Minasny,et al.  A rudimentary mechanistic model for soil production and landscape development , 1999 .

[25]  P. Jones,et al.  Representing Twentieth-Century Space–Time Climate Variability. Part I: Development of a 1961–90 Mean Monthly Terrestrial Climatology , 1999 .

[26]  Steven W. Leavit Biogeochemistry, An Analysis of Global Change , 1998 .

[27]  Sven Erik Jørgensen,et al.  Exergy as goal function of ecosystems dynamic , 1997 .

[28]  W. Dietrich,et al.  The soil production function and landscape equilibrium , 1997, Nature.

[29]  A. White,et al.  Effects of climate on chemical_ weathering in watersheds , 1995 .

[30]  Kathryn L. Nagy,et al.  Chemical weathering rate laws and global geochemical cycles , 1994 .

[31]  H. Odum,et al.  Self-Organization, Transformity, and Information , 1988, Science.

[32]  A. Bejan Advanced Engineering Thermodynamics , 1988 .

[33]  R. Raiswell Thermodynamic Values at Low Temperature for Natural Inorganic Materials: An Uncritical Summary , 1988, Mineralogical Magazine.

[34]  J. Farrar,et al.  The respiratory source of CO2 , 1985 .

[35]  V. Volobuyev Main concepts of soil ecology , 1974 .

[36]  E. Runge,et al.  SOIL DEVELOPMENT SEQUENCES AND ENERGY MODELS , 1973 .

[37]  W. Reiners Structure and Energetics of Three Minnesota Forests , 1972 .

[38]  H. Morowitz,et al.  Energy Flow in Biology , 1969 .

[39]  H. Odum Energy Flow in Biology. Biological Organization as a Problem in Thermal Physics. Harold J. Morowitz. Academic Press, New York, 1968. xii + 179 pp., illus. $9.50 , 1969 .

[40]  D. Botkin,et al.  Efficiency of Net Primary Production Based on Light Intercepted During the Growing Season , 1968 .

[41]  V. Volobuev Ecology of soils , 1965 .

[42]  R. Arkley CALCULATION OF CARBONATE AND WATER MOVEMENT IN SOIL FROM CLIMATIC DATA , 1963 .

[43]  H. Jenny,et al.  Derivation of State Factor Equations of Soils and Ecosystems , 1961 .

[44]  W. C. Krumbein : Factors of Soil Formation: A System of Quantitative Pedology , 1942 .

[45]  Raymond L. Lindeman The trophic-dynamic aspect of ecology , 1942 .

[46]  H. Jenny Factors of Soil Formation , 1941 .

[47]  A. J. Lotka Contribution to the Energetics of Evolution. , 1922, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Simone Bastianoni,et al.  Exergy versus emergy flow in ecosystems: Is there an order in maximizations? , 2006 .

[49]  Pol Coppin,et al.  Land use impact evaluation in life cycle assessment based on ecosystem thermodynamics , 2006 .

[50]  Susan L. Brantley,et al.  Frontiers in exploration of the critical zone , 2005 .

[51]  Ralph D. Lorenz,et al.  Non-equilibrium Thermodynamics and the Production of Entropy , 2005 .

[52]  Ralph D. Lorenz,et al.  1 Entropy Production by Earth System Processes , 2005 .

[53]  James J. Kay,et al.  Ecosystems as Self-organizing Holarchic Open Systems : Narratives and the Second Law of Thermodynamics , 2000 .

[54]  P. Jones,et al.  REPRESENTING TWENTIETH CENTURY SPACE-TIME CLIMATE VARIABILITY. , 1998 .

[55]  V. Smil General Energetics: Energy in the Biosphere and Civilization , 1991 .

[56]  W. Schlesinger Biogeochemistry: An Analysis of Global Change , 1991 .

[57]  R. Garrels,et al.  Thermodynamic values at low temperature for natural inorganic matericals : an uncritical summary , 1987 .

[58]  Neil E. Smeck,et al.  Chapter 3 - Dynamics and Genetic Modelling of Soil Systems , 1983 .

[59]  C. Osmond,et al.  Functional Significance of Different Pathways of CO 2 Fixation in Photosynthesis , 1982 .

[60]  S. Buol Soil Genesis and Classification , 1980 .

[61]  M. I. L'vovich World water resources and their future , 1979 .

[62]  Helmut Lieth,et al.  Primary Production of the Major Vegetation Units of the World , 1975 .