Phase Transition for Parking Blocks, Brownian Excursion and Coalescence

In this paper, we consider hashing with linear probing for a hashing table with m places, n items (n > m), and l = m - n empty places. For a noncomputer science-minded reader, we shall use the metaphore of n cars parking on m places: each car ci chooses a place pi at random, and if pi is occupied, ci tries successively pi + 1, pi + 2, until it finds an empty place. Pittel [42] proves that when l/m goes to some positive limit β > 1, the size B1m,l1 of the largest block of consecutive cars satisfies 2(β - 1 - log β)B1m,l - 3 log log m + Ξm, where Ξm converges weakly to an extreme-value distribution. In this paper we examine at which level for n a phase transition occurs between B1m,l = o(m) and m - B1m,l = o(m). The intermediate case reveals an interesting behavior of sizes of blocks, related to the standard additive coalescent in the same way as the sizes of connected components of the random graph are related to the multiplicative coalescent.

[1]  David Aldous,et al.  The Continuum Random Tree III , 1991 .

[2]  Svante Janson Multicyclic Components in a Random Graph Process , 1993, Random Struct. Algorithms.

[3]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[4]  Yu. L. Pavlov The Asymptotic Distribution of Maximum Tree Size in a Random Forest , 1978 .

[5]  Mihael Perman,et al.  Order statistics for jumps of normalised subordinators , 1993 .

[6]  John Riordan,et al.  Mappings of acyclic and parking functions , 1973 .

[7]  Jean Bertoin,et al.  A fragmentation process connected to Brownian motion , 2000 .

[8]  Donald E. Knuth,et al.  The art of computer programming, volume 3: (2nd ed.) sorting and searching , 1998 .

[9]  Jean Françon Acyclic and Parking Functions , 1975, J. Comb. Theory, Ser. A.

[10]  Jim Pitman,et al.  Brownian bridge asymptotics for random mappings , 1992, Advances in Applied Probability.

[11]  Guy Louchard,et al.  Large finite population queueing systems. The single-server model , 1994 .

[12]  Béla Bollobás,et al.  Random Graphs , 1985 .

[13]  R. Arratia,et al.  Poisson Process Approximations for the Ewens Sampling Formula , 1992 .

[14]  J. Harrison,et al.  Brownian motion and stochastic flow systems , 1986 .

[15]  D. Aldous Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists , 1999 .

[16]  Richard P. Stanley,et al.  Hyperplane Arrangements, Parking Functions and Tree Inversions , 1998 .

[17]  Gérald Tenenbaum,et al.  Introduction à la théorie analytique et probabiliste des nombres , 1990 .

[18]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[19]  Richard P. Stanley,et al.  A Polytope Related to Empirical Distributions, Plane Trees, Parking Functions, and the Associahedron , 2002, Discret. Comput. Geom..

[20]  Donald E. Knuth,et al.  The first cycles in an evolving graph , 1989, Discret. Math..

[21]  A. Konheim,et al.  An Occupancy Discipline and Applications , 1966 .

[22]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[23]  Paul Erdös,et al.  The Giant Component 1960-1993 , 1993, Random Struct. Algorithms.

[24]  D. Pollard Convergence of stochastic processes , 1984 .

[25]  L. Rogers,et al.  Diffusions, Markov processes, and martingales , 1979 .

[26]  Philippe Chassaing,et al.  Parking Functions, Empirical Processes, and the Width of Rooted Labeled Trees , 2001, Electron. J. Comb..

[27]  M. Donsker Justification and Extension of Doob's Heuristic Approach to the Kolmogorov- Smirnov Theorems , 1952 .

[28]  J. Pitman,et al.  The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator , 1997 .

[29]  École d'été de probabilités de Saint-Flour,et al.  École d'été de probabilités de Saint-Flour XIII - 1983 , 1985 .

[30]  Jim Pitman,et al.  Arcsine Laws and Interval Partitions Derived from a Stable Subordinator , 1992 .

[31]  Svante Janson,et al.  A Vervaat-like path transformation for the reflected Brownian bridge conditioned on its local time at 0 , 2001 .

[32]  P. Massart The Tight Constant in the Dvoretzky-Kiefer-Wolfowitz Inequality , 1990 .

[33]  Andrew D. Barbour,et al.  On Poisson–Dirichlet Limits for Random Decomposable Combinatorial Structures , 1999, Combinatorics, Probability and Computing.

[34]  Donald E. Knuth Linear Probing and Graphs , 1998, Algorithmica.

[35]  Philippe Flajolet,et al.  On the Analysis of Linear Probing Hashing , 1998, Algorithmica.

[36]  Svante Janson,et al.  The Birth of the Giant Component , 1993, Random Struct. Algorithms.

[37]  J. Wellner,et al.  Empirical Processes with Applications to Statistics , 2009 .

[38]  L. A. Shepp,et al.  Ordered cycle lengths in a random permutation , 1966 .

[39]  J. Pitman Exchangeable and partially exchangeable random partitions , 1995 .

[40]  J. Pitman,et al.  Size-biased sampling of Poisson point processes and excursions , 1992 .

[41]  David Aldous Hashing with Linear Probing under Nonuniform Probabilities , 1988 .

[42]  Boris G. Pittel,et al.  Linear Probing: The Probable Largest Search Time Grows Logarithmically with the Number of Records , 1987, J. Algorithms.

[43]  Jim Pitman,et al.  Construction of markovian coalescents , 1998 .

[44]  John Riordan,et al.  Ballots and trees , 1969 .

[45]  Jim Pitman,et al.  The standard additive coalescent , 1998 .

[46]  David Aldous,et al.  Brownian excursions, critical random graphs and the multiplicative coalescent , 1997 .

[47]  CoalescenceDavid J. Aldous Stochastic Coalescence , 1998 .

[48]  Richard P. Stanley,et al.  Parking functions and noncrossing partitions , 1996, Electron. J. Comb..

[49]  Marcel Paul Schützenberger On an enumeration problem , 1968 .

[50]  W. Vervaat,et al.  A Relation between Brownian Bridge and Brownian Excursion , 1979 .

[51]  N. Bingham EMPIRICAL PROCESSES WITH APPLICATIONS TO STATISTICS (Wiley Series in Probability and Mathematical Statistics) , 1987 .

[52]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[53]  D. Aldous Exchangeability and related topics , 1985 .

[54]  K. Dickman On the frequency of numbers containing prime factors of a certain relative magnitude , 1930 .

[55]  J. Pitman Random discrete distributions invariant under size-biased permutation , 1996, Advances in Applied Probability.