ON CORRELATED-NOISE ANALYSES APPLIED TO EXOPLANET LIGHT CURVES

Time-correlated noise is a significant source of uncertainty when modeling exoplanet light-curve data. A correct assessment of correlated noise is fundamental to determine the true statistical significance of our findings. Here we review three of the most widely used correlated-noise estimators in the exoplanet field, the time-averaging, residual-permutation, and wavelet-likelihood methods. We argue that the residual-permutation method is unsound in estimating the uncertainty of parameter estimates. We thus recommend to refrain from this method altogether. We characterize the behavior of the time averaging's rms-vs.-bin-size curves at bin sizes similar to the total observation duration, which may lead to underestimated uncertainties. For the wavelet-likelihood method, we note errors in the published equations and provide a list of corrections. We further assess the performance of these techniques by injecting and retrieving eclipse signals into synthetic and real Spitzer light curves, analyzing the results in terms of the relative-accuracy and coverage-fraction statistics. Both the time-averaging and wavelet-likelihood methods significantly improve the estimate of the eclipse depth over a white-noise analysis (a Markov-chain Monte Carlo exploration assuming uncorrelated noise). However, the corrections are not perfect, when retrieving the eclipse depth from Spitzer datasets, these methods covered the true (injected) depth within the 68\% credible region in only $\sim$45--65\% of the trials. Lastly, we present our open-source model-fitting tool, Multi-Core Markov-Chain Monte Carlo ({MC$^3$}). This package uses Bayesian statistics to estimate the best-fitting values and the credible regions for the parameters for a (user-provided) model. {MC$^3$} is a Python/C code, available at this https URL

[1]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[2]  Robert T. Zellem,et al.  THE 4.5 μm FULL-ORBIT PHASE CURVE OF THE HOT JUPITER HD 209458b , 2014, 1405.5923.

[3]  David Charbonneau,et al.  Detection of Thermal Emission from an Extrasolar Planet , 2005 .

[4]  Drake Deming,et al.  A Search for a Sub-Earth-Sized Companion to GJ 436 and a Novel Method to Calibrate Warm Spitzer IRAC Observations , 2010, 1009.0755.

[5]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[6]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[7]  Drake Deming,et al.  Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b , 2010, Nature.

[8]  J. Jenkins,et al.  Some Tests to Establish Confidence in Planets Discovered by Transit Photometry , 2002 .

[9]  Nikole K. Lewis,et al.  ORBITAL PHASE VARIATIONS OF THE ECCENTRIC GIANT PLANET HAT-P-2b , 2013, 1302.5084.

[10]  A. Gelman,et al.  Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .

[11]  Neale P. Gibson,et al.  Reliable inference of exoplanet light-curve parameters using deterministic and stochastic systematics models , 2014, 1409.5668.

[12]  Philip C. Gregory,et al.  Bayesian Logical Data Analysis for the Physical Sciences: Acknowledgements , 2005 .

[13]  Leslie Hebb,et al.  ON THE ORBIT OF EXOPLANET WASP-12b , 2010, 1003.2763.

[14]  J. Harrington,et al.  A SPITZER FIVE-BAND ANALYSIS OF THE JUPITER-SIZED PLANET TrES-1 , 2014 .

[15]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[16]  A. Zellner An Introduction to Bayesian Inference in Econometrics , 1971 .

[17]  Changbao Wu,et al.  Asymptotic Theory of Nonlinear Least Squares Estimation , 1981 .

[18]  Drake Deming,et al.  REPEATABILITY AND ACCURACY OF EXOPLANET ECLIPSE DEPTHS MEASURED WITH POST-CRYOGENIC SPITZER , 2016, 1601.05101.

[19]  S. Aigrain,et al.  A Gaussian process framework for modelling instrumental systematics: application to transmission spectroscopy , 2011, 1109.3251.

[20]  David Charbonneau,et al.  The 3.6-8.0 μm Broadband Emission Spectrum of HD 209458b: Evidence for an Atmospheric Temperature Inversion , 2007, 0709.3984.

[21]  Donald B. Rubin,et al.  Validation of Software for Bayesian Models Using Posterior Quantiles , 2006 .

[22]  D. Charbonneau,et al.  THE CLIMATE OF HD 189733b FROM FOURTEEN TRANSITS AND ECLIPSES MEASURED BY SPITZER , 2010, 1007.4378.

[23]  Drake Deming,et al.  SPITZER SECONDARY ECLIPSES OF THE DENSE, MODESTLY-IRRADIATED, GIANT EXOPLANET HAT-P- 20 b ?> USING PIXEL-LEVEL DECORRELATION , 2014, 1411.7404.

[24]  David Charbonneau,et al.  THE 8 μm PHASE VARIATION OF THE HOT SATURN HD 149026b , 2009, 0908.1977.

[25]  G. Wornell Wavelet-based representations for the 1/f family of fractal processes , 1993, Proc. IEEE.

[26]  D. Queloz,et al.  Doppler follow-up of OGLE transiting companions in the Galactic Bulge , 2005 .

[27]  Portugal,et al.  Accurate Spitzer infrared radius measurement for the hot Neptune GJ 436b , 2007, 0707.2261.

[28]  Cajo J. F. ter Braak,et al.  A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces , 2006, Stat. Comput..

[29]  T. Evans,et al.  A uniform analysis of HD 209458b Spitzer/IRAC light curves with Gaussian process models , 2015, 1504.05942.

[30]  W. C. Bowman,et al.  THERMAL EMISSION OF WASP-14b REVEALED WITH THREE SPITZER ECLIPSES , 2011, 1111.2363.

[31]  Cajo J. F. ter Braak,et al.  Differential Evolution Markov Chain with snooker updater and fewer chains , 2008, Stat. Comput..

[32]  E. Agol,et al.  3.6 AND 4.5 μm PHASE CURVES OF THE HIGHLY IRRADIATED ECCENTRIC HOT JUPITER WASP-14b , 2015, 1505.03158.

[33]  David S. Matteson,et al.  Statistics and Data Analysis for Financial Engineering: with R examples , 2015 .

[34]  Thomas J. Loredo,et al.  TRANSIT AND ECLIPSE ANALYSES OF THE EXOPLANET HD 149026b USING BLISS MAPPING , 2011, 1108.2057.

[35]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[36]  Andrew Szentgyorgyi,et al.  A GROUND-BASED OPTICAL TRANSMISSION SPECTRUM OF WASP-6b , 2013, 1310.6048.

[37]  Gregory W. Wornell,et al.  Wavelet-based representations for a class of self-similar signals with application to fractal modulation , 1992, IEEE Trans. Inf. Theory.

[38]  John Southworth,et al.  Homogeneous studies of transiting extrasolar planets – I. Light-curve analyses , 2008, 0802.3764.

[39]  Joshua N. Winn,et al.  PARAMETER ESTIMATION FROM TIME-SERIES DATA WITH CORRELATED ERRORS: A WAVELET-BASED METHOD AND ITS APPLICATION TO TRANSIT LIGHT CURVES , 2009, 0909.0747.

[40]  E. Bullmore,et al.  Wavelet-Generalized Least Squares: A New BLU Estimator of Linear Regression Models with 1/f Errors , 2002, NeuroImage.

[41]  Heidelberg,et al.  WASP-8b: CHARACTERIZATION OF A COOL AND ECCENTRIC EXOPLANET WITH SPITZER , 2013, 1303.5468.

[42]  Aisey M Andel ANALYTIC LIGHTCURVES FOR PLANETARY TRANSIT SEARCHES , 2002 .

[43]  Drake Deming,et al.  DETECTION OF THERMAL EMISSION FROM A SUPER-EARTH , 2012, 1205.1766.

[44]  Christopher J. Campo,et al.  TWO NEARBY SUB-EARTH-SIZED EXOPLANET CANDIDATES IN THE GJ 436 SYSTEM , 2012, 1207.4245.

[45]  Avi Shporer,et al.  The Transit Light Curve Project. VII. The Not-So-Bloated Exoplanet HAT-P-1b , 2007, 0707.1908.

[46]  Gregory W. Wornell,et al.  Estimation of fractal signals from noisy measurements using wavelets , 1992, IEEE Trans. Signal Process..

[47]  Frederic Pont,et al.  The effect of red noise on planetary transit detection , 2006, astro-ph/0608597.

[48]  Phil Gregory Bayesian Logical Data Analysis for the Physical Sciences: References , 2005 .

[49]  Mohamed A. Deriche,et al.  Maximum likelihood estimation of the parameters of discrete fractionally differenced Gaussian noise process , 1993, IEEE Trans. Signal Process..

[50]  Daniel Gianola,et al.  An Introduction to Bayesian Inference , 2002 .

[51]  S. Lahiri Resampling Methods for Dependent Data , 2003 .

[52]  Accurate radius and mass of the transiting exoplanet OGLE-TR-132b , 2004, astro-ph/0407635.

[53]  Stphane Mallat,et al.  A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way , 2008 .

[54]  Drake Deming,et al.  The hottest planet , 2007, Nature.

[55]  W. C. Bowman,et al.  SPITZER SECONDARY ECLIPSES OF WASP-18b , 2010, 1005.1017.

[56]  Giuseppe Morello,et al.  A BLIND METHOD TO DETREND INSTRUMENTAL SYSTEMATICS IN EXOPLANETARY LIGHT CURVES , 2015, 1503.05309.

[57]  G. Fazio,et al.  The Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, astro-ph/0405616.