FluoEM, virtual labeling of axons in three-dimensional electron microscopy data for long-range connectomics

The labeling and identification of long-range axonal inputs from multiple sources within densely reconstructed electron microscopy (EM) datasets from mammalian brains has been notoriously difficult because of the limited color label space of EM. Here, we report FluoEM for the identification of multi-color fluorescently labeled axons in dense EM data without the need for artificial fiducial marks or chemical label conversion. The approach is based on correlated tissue imaging and computational matching of neurite reconstructions, amounting to a virtual color labeling of axons in dense EM circuit data. We show that the identification of fluorescent light- microscopically (LM) imaged axons in 3D EM data from mouse cortex is faithfully possible as soon as the EM dataset is about 40–50 µm in extent, relying on the unique trajectories of axons in dense mammalian neuropil. The method is exemplified for the identification of long-distance axonal input into layer 1 of the mouse cerebral cortex.

[1]  Louis K. Scheffer,et al.  A genetically specified connectomics approach applied to long-range feeding regulatory circuits , 2014, Nature Neuroscience.

[2]  G. Jékely,et al.  A serial multiplex immunogold labeling method for identifying peptidergic neurons in connectomes , 2015, bioRxiv.

[3]  Eugene W. Myers,et al.  Thalamocortical input onto layer 5 pyramidal neurons measured using quantitative large-scale array tomography , 2013, Front. Neural Circuits.

[4]  Karel Svoboda,et al.  Long-Range Neuronal Circuits Underlying the Interaction between Sensory and Motor Cortex , 2011, Neuron.

[5]  Quanxin Wang,et al.  Recruitment of inhibition and excitation across mouse visual cortex depends on the hierarchy of interconnecting areas , 2016, eLife.

[6]  H. Markram,et al.  Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. , 1997, The Journal of physiology.

[7]  Francesc Moreno-Noguer,et al.  Non-Rigid Graph Registration Using Active Testing Search , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Alex S. Ferecskó,et al.  The fractions of short- and long-range connections in the visual cortex , 2009, Proceedings of the National Academy of Sciences.

[9]  Ericka B. Ramko,et al.  A Genetically Encoded Tag for Correlated Light and Electron Microscopy of Intact Cells, Tissues, and Organisms , 2011, PLoS biology.

[10]  M. Colonnier EXPERIMENTAL DEGENERATION IN THE CEREBRAL CORTEX. , 1964, Journal of anatomy.

[11]  Kevin L. Briggman,et al.  Wiring specificity in the direction-selectivity circuit of the retina , 2011, Nature.

[12]  Philipp Otto,et al.  webKnossos: efficient online 3D data annotation for connectomics , 2017, Nature Methods.

[13]  Andreas Hoenger,et al.  Correlative microscopy and electron tomography of GFP through photooxidation , 2005, Nature Methods.

[14]  Srinivas C. Turaga,et al.  Development of High-Throughput, High-Resolution 3D Reconstruction of Large-Volume Biological Tissue Using Automated Tape Collection Ultramicrotomy and Scanning Electron Microscopy , 2011, Microscopy and Microanalysis.

[15]  Fang Liu,et al.  Serial Block Face-Scanning Electron Microscopy of the Developing Rat Brain Exposed to Ketamine Reveals Changes in Mitochondrial Ultrastructure , 2015, Microscopy and Microanalysis.

[16]  Aravinthan D. T. Samuel,et al.  The wiring diagram of a glomerular olfactory system , 2016, bioRxiv.

[17]  Daniel J. Uhlrich,et al.  Synaptic connectivity of a local circuit neurone in lateral geniculate nucleus of the cat , 1985, Nature.

[18]  Fred A. Hamprecht,et al.  Correlative In Vivo 2 Photon and Focused Ion Beam Scanning Electron Microscopy of Cortical Neurons , 2013, PloS one.

[19]  矢野 貴人,et al.  Directed Evolution のさまざまな応用例 , 2003 .

[20]  K. Hayworth,et al.  Enhanced FIB-SEM systems for large-volume 3D imaging , 2017, eLife.

[21]  Mark H. Ellisman,et al.  Supplementary Text: Mechanistic Investigation of Apex2 , 2014 .

[22]  Daniel Rueckert,et al.  Nonrigid registration using free-form deformations: application to breast MR images , 1999, IEEE Transactions on Medical Imaging.

[23]  Stephan Saalfeld,et al.  CATMAID: collaborative annotation toolkit for massive amounts of image data , 2009, Bioinform..

[24]  M. Helmstaedter,et al.  Large-volume en-bloc staining for electron microscopy-based connectomics , 2015, Nature Communications.

[25]  Kristina D. Micheva,et al.  Array Tomography: A New Tool for Imaging the Molecular Architecture and Ultrastructure of Neural Circuits , 2007, Neuron.

[26]  Sung Yong Shin,et al.  Scattered Data Interpolation with Multilevel B-Splines , 1997, IEEE Trans. Vis. Comput. Graph..

[27]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[28]  Brett J. Graham,et al.  Anatomy and function of an excitatory network in the visual cortex , 2016, Nature.

[29]  S. Subramaniam,et al.  Site-specific 3D imaging of cells and tissues with a dual beam microscope. , 2006, Journal of structural biology.

[30]  W. Scheirer,et al.  Reconstruction of genetically identified neurons imaged by serial-section electron microscopy , 2016, eLife.

[31]  W. Faulk,et al.  An immunocolloid method for the electron microscope. , 1971, Immunochemistry.

[32]  Arthur W. Wetzel,et al.  Network anatomy and in vivo physiology of visual cortical neurons , 2011, Nature.

[33]  W. Denk,et al.  Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure , 2004, PLoS biology.

[34]  Pascal Fua,et al.  Modeling brain circuitry over a wide range of scales , 2015, Front. Neuroanat..

[35]  E. White Identified neurons in mouse smi cortex which are postsynaptic to thalamocortical axon terminals: A combined golgi‐electron microscopic and degeneration study , 1978, The Journal of comparative neurology.

[36]  R. Wepf,et al.  Simultaneous Correlative Scanning Electron and High-NA Fluorescence Microscopy , 2013, PloS one.

[37]  William R. Gray Roncal,et al.  Saturated Reconstruction of a Volume of Neocortex , 2015, Cell.

[38]  Mark H. Ellisman,et al.  Engineered ascorbate peroxidase as a genetically-encoded reporter for electron microscopy , 2012, Nature Biotechnology.

[39]  Mary T. Brinkoetter,et al.  Near-infrared branding efficiently correlates light and electron microscopy , 2011, Nature Methods.

[40]  Francesc Moreno-Noguer,et al.  Robust non-rigid registration of 2D and 3D graphs , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[41]  Moritz Helmstaedter,et al.  High-accuracy neurite reconstruction for high-throughput neuroanatomy , 2011, Nature Neuroscience.

[42]  G. Knott,et al.  Serial Section Scanning Electron Microscopy of Adult Brain Tissue Using Focused Ion Beam Milling , 2008, The Journal of Neuroscience.

[43]  M. Helmstaedter Cellular-resolution connectomics: challenges of dense neural circuit reconstruction , 2013, Nature Methods.

[44]  Karel Svoboda,et al.  A protocol for preparing GFP-labeled neurons previously imaged in vivo and in slice preparations for light and electron microscopic analysis , 2009, Nature Protocols.

[45]  K. Horikawa,et al.  A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates , 1988, Journal of Neuroscience Methods.

[46]  Moritz Helmstaedter,et al.  SegEM: Efficient Image Analysis for High-Resolution Connectomics , 2015, Neuron.

[47]  Mark Ellisman,et al.  High-quality ultrastructural preservation using cryofixation for 3D electron microscopy of genetically labeled tissues , 2018, bioRxiv.

[48]  B. Humbel,et al.  Integrated fluorescence and transmission electron microscopy. , 2008, Journal of structural biology.

[49]  Nuno Maçarico da Costa,et al.  How Thalamus Connects to Spiny Stellate Cells in the Cat's Visual Cortex , 2011, The Journal of Neuroscience.

[50]  Armen Stepanyants,et al.  Computer assisted detection of axonal bouton structural plasticity in in vivo time-lapse images , 2017, eLife.

[51]  Srinivas C. Turaga,et al.  Connectomic reconstruction of the inner plexiform layer in the mouse retina , 2013, Nature.

[52]  E. Gray,et al.  Electron microscopy of experimental degeneration in the avian optic tectum. , 1962, Journal of anatomy.

[53]  Mark H. Ellisman,et al.  Directed evolution of APEX2 for electron microscopy and proteomics , 2014, Nature Methods.

[54]  Zhiyuan Lu,et al.  Mapping chromatic pathways in the Drosophila visual system , 2016, The Journal of comparative neurology.

[55]  J. C. Anderson,et al.  Map of the synapses formed with the dendrites of spiny stellate neurons of cat visual cortex , 1994, The Journal of comparative neurology.

[56]  G. Urban,et al.  Automated synaptic connectivity inference for volume electron microscopy , 2017, Nature Methods.

[57]  Edward L. White,et al.  Thalamocortical synapses with corticothalamic projection neurons in mouse SmI cortex: Electron microscopic demonstration of a monosynaptic feedback loop , 1981, Neuroscience Letters.

[58]  W. Faulk,et al.  Communication to the editors: An immunocolloid method for the electron microscope , 1971 .

[59]  Larry Lindsey,et al.  High-precision automated reconstruction of neurons with flood-filling networks , 2017, Nature Methods.

[60]  Sriram Subramaniam,et al.  Correlative 3D imaging of whole mammalian cells with light and electron microscopy. , 2011, Journal of structural biology.

[61]  J C Anderson,et al.  Synaptic output of physiologically identified spiny stellate neurons in cat visual cortex , 1994, The Journal of comparative neurology.

[62]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[63]  A R Maranto,et al.  Neuronal mapping: a photooxidation reaction makes Lucifer yellow useful for electron microscopy. , 1982, Science.

[64]  A. Wanner,et al.  Dense EM-based reconstruction of the interglomerular projectome in the zebrafish olfactory bulb , 2016, Nature Neuroscience.

[65]  G. Knott,et al.  Ultrastructurally-smooth thick partitioning and volume stitching for larger-scale connectomics , 2015, Nature Methods.

[66]  Patrick van der Smagt,et al.  SynEM, automated synapse detection for connectomics , 2017, eLife.

[67]  Kevin L. Briggman,et al.  Extracellular space preservation aids the connectomic analysis of neural circuits , 2015, eLife.