DtN and NtD surface radiation conditions for two-dimensional acoustic scattering

The aim of this paper is to derive and evaluate new approximations of the Dirichlet-to-Neumann (DtN) and Neumann-to-Dirichlet (NtD) maps for two-dimensional acoustic scattering problems. Some formal approximations for the two-dimensional case are derived. These various approximations are next numerically validated and compared.

[1]  R. C. Reiner,et al.  The performance of local absorbing boundary conditions for acoustic scattering from elliptical shapes , 2006 .

[2]  Björn Engquist,et al.  On surface radiation conditions for high-frequency wave scattering , 2007 .

[3]  Isaac Harari,et al.  A survey of finite element methods for time-harmonic acoustics , 2006 .

[4]  Eli Turkel,et al.  Local absorbing boundary conditions for elliptical shaped boundaries , 2008, J. Comput. Phys..

[5]  Ross D. Murch,et al.  The on-surface radiation condition applied to three-dimensional convex objects , 1993 .

[6]  D. Roxburgh,et al.  Electromagnetic scattering from a right-circular cylinder using a surface radiation condition , 1997 .

[7]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[8]  J. Nédélec Acoustic and Electromagnetic Equations : Integral Representations for Harmonic Problems , 2001 .

[9]  Fernando Reitich,et al.  Prescribed error tolerances within fixed computational times for scattering problems of arbitrarily high frequency: the convex case , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[10]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[11]  A. Taflove,et al.  A new formulation of electromagnetic wave scattering using an on-surface radiation boundary condition approach , 1987 .

[12]  O. Bruno,et al.  An O(1) integration scheme for three-dimensional surface scattering problems , 2007 .

[13]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[14]  G. F. Miller,et al.  The application of integral equation methods to the numerical solution of some exterior boundary-value problems , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[15]  Alfredo Bermúdez,et al.  An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems , 2007, J. Comput. Phys..

[16]  Rabia Djellouli,et al.  Three-dimensional approximate local DtN boundary conditions for prolate spheroid boundaries , 2010, J. Comput. Appl. Math..

[17]  Gary H. Brooke,et al.  Rational square-root approximations for parabolic equation algorithms , 1997 .

[18]  Ivan P. Gavrilyuk Book Review: Fast multipole boundary element method , 2011 .

[19]  Peter Monk,et al.  The Perfectly Matched Layer in Curvilinear Coordinates , 1998, SIAM J. Sci. Comput..

[20]  Jian-Ming Jin,et al.  Fast and Efficient Algorithms in Computational Electromagnetics , 2001 .

[21]  Xavier Antoine,et al.  Bayliss-Turkel-like radiation conditions on surfaces of arbitrary shape , 1999 .

[22]  Xavier Antoine,et al.  Advances in the On-Surface Radiation Condition Method: Theory, Numerics and Applications , 2008 .

[23]  Habib Ammari,et al.  Scattering of waves by thin periodic layers at high frequencies using the on-surface radiation condition method , 1998 .

[24]  Y. Lu,et al.  An improved surface radiation condition for high-frequency acoustic scattering problems , 2006 .

[25]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[26]  F. Molinet,et al.  Asymptotic and Hybrid Methods in Electromagnetics , 2005 .

[27]  Eli Turkel,et al.  On surface radiation conditions for an ellipse , 2010, J. Comput. Appl. Math..

[28]  S. M. Kirkup,et al.  Solution of Helmholtz Equation in the Exterior Domain by Elementary Boundary Integral Methods , 1995 .

[29]  Eric Darve,et al.  The Fast Multipole Method , 2000 .

[30]  Eric F Darve Regular ArticleThe Fast Multipole Method: Numerical Implementation , 2000 .

[31]  M. Gunzburger,et al.  Boundary conditions for the numerical solution of elliptic equations in exterior regions , 1982 .

[32]  Christophe Geuzaine,et al.  Computational Methods for Multiple Scattering at High Frequency with Applications to Periodic Structure Calculations , 2010 .

[33]  Semyon Tsynkov,et al.  High order numerical simulation of the transmission and scattering of waves using the method of difference potentials , 2013, J. Comput. Phys..

[34]  M. D. Collins,et al.  A higher-order on-surface radiation condition derived from an analytic representation of a Dirichlet-to-Neumann map , 2003 .

[35]  L. Hörmander,et al.  The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis , 1983 .

[36]  C. Geuzaine,et al.  On the O(1) solution of multiple-scattering problems , 2005, IEEE Transactions on Magnetics.

[37]  Christophe Geuzaine,et al.  A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation , 2012, J. Comput. Phys..

[38]  Marion Darbas,et al.  Combining analytic preconditioner and Fast Multipole Method for the 3-D Helmholtz equation , 2013, J. Comput. Phys..

[39]  Peter Werner,et al.  Über das Dirichletsche Außenraumproblem für die Helmholtzsche Schwingungsgleichung , 1965 .

[40]  R. Kress,et al.  Integral equation methods in scattering theory , 1983 .

[41]  Christophe Geuzaine,et al.  A quasi-optimal domain decomposition algorithm for the time-harmonic Maxwell's equations , 2015, J. Comput. Phys..

[42]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[43]  David C. Calvo,et al.  A wide-angle on-surface radiation condition applied to scattering by spheroids , 2004 .

[44]  Christophe Geuzaine,et al.  Approximate local magnetic-to-electric surface operators for time-harmonic Maxwell's equations , 2014, J. Comput. Phys..

[45]  Eli Turkel,et al.  Boundary Conditions and Iterative Schemes for the Helmholtz Equation in Unbounded Regions , 2008 .

[46]  X. Antoine,et al.  Alternative integral equations for the iterative solution of acoustic scattering problems , 2005 .

[47]  Xavier Antoine,et al.  Fast approximate computation of a time-harmonic scattered field using the on-surface radiation condition method , 2001 .

[48]  R. Djellouli,et al.  High-frequency analysis of the efficiency of a local approximate DtN2 boundary condition for prolate spheroidal-shaped boundaries , 2010 .

[49]  Anne-Sophie Bonnet-Ben Dhia,et al.  Perfectly Matched Layers for Time-Harmonic Acoustics in the Presence of a Uniform Flow , 2006, SIAM J. Numer. Anal..

[50]  F. L. Louër,et al.  Approximate local Dirichlet-to-Neumann map for three-dimensional time-harmonic elastic waves , 2015 .

[51]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[52]  E. Turkel,et al.  ANALYTICAL AND NUMERICAL STUDIES OF A FINITE ELEMENT PML FOR THE HELMHOLTZ EQUATION , 2000 .