New Approaches to the Analysis and Design of Reed-Solomon Related Codes

The research that led to this thesis was inspired by Sudan's breakthrough that demonstrated that Reed-Solomon codes can correct more errors than previously thought. This breakthrough can render the current state-of-the-art Reed-Solomon decoders obsolete. Much of the importance of Reed-Solomon codes stems from their ubiquity and utility. This thesis takes a few steps toward a deeper understanding of Reed-Solomon codes as well as toward the design of efficient algorithms for decoding them. After studying the binary images of Reed-Solomon codes, we proceeded to analyze their performance under optimum decoding. Moreover, we investigated the performance of Reed-Solomon codes in network scenarios when the code is shared by many users or applications. We proved that Reed-Solomon codes have many more desirable properties. Algebraic soft decoding of Reed-Solomon codes is a class of algorithms that was stirred by Sudan's breakthrough. We developed a mathematical model for algebraic soft decoding. By designing Reed-Solomon decoding algorithms, we showed that algebraic soft decoding can indeed approach the ultimate performance limits of Reed-Solomon codes. We then shifted our attention to products of Reed-Solomon codes. We analyzed the performance of linear product codes in general and Reed-Solomon product codes in particular. Motivated by these results we designed a number of algorithms, based on Sudan's breakthrough, for decoding Reed-Solomon product codes. Lastly, we tackled the problem of analyzing the performance of sphere decoding of lattice codes and linear codes, e.g., Reed-Solomon codes, with an eye on the tradeoff between performance and complexity.

[1]  Shu Lin,et al.  On bit-error probability of a concatenated coding scheme , 1997, IEEE Trans. Commun..

[2]  Amin Shokrollahi,et al.  List Decoding of Algebraic-Geometric Codes , 1999, IEEE Trans. Inf. Theory.

[3]  Branka Vucetic,et al.  Soft decision decoding of Reed-Solomon codes , 2002, IEEE Trans. Commun..

[4]  Babak Hassibi,et al.  On joint detection and decoding of linear block codes on Gaussian vector channels , 2006, IEEE Transactions on Signal Processing.

[5]  Krishna R. Narayanan,et al.  Iterative soft decision decoding of Reed Solomon codes based on adaptive parity check matrices , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[6]  U. Fincke,et al.  Improved methods for calculating vectors of short length in a lattice , 1985 .

[7]  H. Herzberg,et al.  Techniques of bounding the probability of decoding error for block coded modulation structures , 1994, IEEE Trans. Inf. Theory.

[8]  Robert J. McEliece,et al.  The Theory of Information and Coding , 1979 .

[9]  Shu Lin,et al.  Bit-Error Probability for Maximum-Likelihood Decoding of Linear Block Codes and Related Soft-Decision Decoding Methods , 1998, IEEE Trans. Inf. Theory.

[10]  I. M. Jacobs,et al.  Principles of Communication Engineering , 1965 .

[11]  Tom Høholdt,et al.  Decoding Reed-Solomon Codes Beyond Half the Minimum Distance , 2000 .

[12]  Babak Hassibi,et al.  Bounds on the performance of sphere decoding of linear block codes , 2005, IEEE Information Theory Workshop, 2005..

[13]  F. Chiaraluce,et al.  Extended Hamming product codes analytical performance evaluation for low error rate applications , 2004, IEEE Transactions on Wireless Communications.

[14]  Marc P. C. Fossorier Critical point for maximum likelihood decoding of linear block codes , 2005, IEEE Communications Letters.

[15]  Shlomo Shamai,et al.  Improved upper bounds on the ML decoding error probability of parallel and serial concatenated turbo codes via their ensemble distance spectrum , 2000, IEEE Trans. Inf. Theory.

[16]  David Chase,et al.  Class of algorithms for decoding block codes with channel measurement information , 1972, IEEE Trans. Inf. Theory.

[17]  William T. Freeman,et al.  Understanding belief propagation and its generalizations , 2003 .

[18]  Xin-Wen Wu,et al.  List decoding of q-ary Reed-Muller codes , 2004, IEEE Transactions on Information Theory.

[19]  Ludo M. G. M. Tolhuizen More results on the weight enumerator of product codes , 2002, IEEE Trans. Inf. Theory.

[20]  Frank R. Kschischang,et al.  Towards a VLSI Architecture for Interpolation-Based Soft-Decision Reed-Solomon Decoders , 2005, J. VLSI Signal Process..

[21]  Peter Elias,et al.  Error-free Coding , 1954, Trans. IRE Prof. Group Inf. Theory.

[22]  Babak Hassibi,et al.  Statistical approach to ML decoding of linear block codes on symmetric channels , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[23]  Shuo-Yen Robert Li,et al.  Network Coding Theory - Part I: Single Source , 2005, Found. Trends Commun. Inf. Theory.

[24]  Peter Elias,et al.  List decoding for noisy channels , 1957 .

[25]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[26]  Gregory Poltyrev,et al.  Bounds on the decoding error probability of binary linear codes via their spectra , 1994, IEEE Trans. Inf. Theory.

[27]  Tai-Yang Hwang A relation between the row weight and column weight distributions of a matrix , 1981, IEEE Trans. Inf. Theory.

[28]  Andrew J. Viterbi,et al.  Error bounds for convolutional codes and an asymptotically optimum decoding algorithm , 1967, IEEE Trans. Inf. Theory.

[29]  Shlomo Shamai,et al.  Performance Analysis of Linear Codes under Maximum-Likelihood Decoding: A Tutorial , 2006, Found. Trends Commun. Inf. Theory.

[30]  Krishna R. Narayanan,et al.  Iterative Soft-Input Soft-Output Decoding of Reed–Solomon Codes by Adapting the Parity-Check Matrix , 2005, IEEE Transactions on Information Theory.

[31]  M. El-Khamy,et al.  The average weight enumerator and the maximum likelihood performance of product codes , 2005, 2005 International Conference on Wireless Networks, Communications and Mobile Computing.

[32]  Claus-Peter Schnorr,et al.  Lattice basis reduction: Improved practical algorithms and solving subset sum problems , 1991, FCT.

[33]  Mohamed Oussama Damen,et al.  Lattice code decoder for space-time codes , 2000, IEEE Communications Letters.

[34]  Ian F. Blake,et al.  On the Complete Weight Enumerator of Reed-Solomon Codes , 1991, SIAM J. Discret. Math..

[35]  Madhu Sudan,et al.  Reconstructing curves in three (and higher) dimensional space from noisy data , 2003, STOC '03.

[36]  Robert J. McEliece,et al.  BSC Thresholds for Code Ensembles Based on “Typical Pairs” Decoding , 2001 .

[37]  Bahram Honary,et al.  Fast Chase algorithm with an application in turbo decoding , 2001, IEEE Trans. Commun..

[38]  A. Vardy,et al.  Multiplicity assignments for algebraic soft-decoding of reed-solomon codes , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[39]  C. Kelley Solving Nonlinear Equations with Newton's Method , 1987 .

[40]  Alexander Vardy,et al.  Closest point search in lattices , 2002, IEEE Trans. Inf. Theory.

[41]  Tadao Kasami,et al.  New generalizations of the Reed-Muller codes-I: Primitive codes , 1968, IEEE Trans. Inf. Theory.

[42]  C. Shannon Probability of error for optimal codes in a Gaussian channel , 1959 .

[43]  Alexander Vardy,et al.  Algebraic soft-decision decoding of Reed-Solomon codes , 2003, IEEE Trans. Inf. Theory.

[44]  Stephen B. Wicker,et al.  Type-II hybrid-ARQ protocols using punctured MDS codes , 1994, IEEE Trans. Commun..

[45]  Robert J. McEliece,et al.  Performance enhancements for algebraic soft decision decoding of Reed-Solomon codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[46]  Ramesh Pyndiah,et al.  Near optimum decoding of product codes , 1994, 1994 IEEE GLOBECOM. Communications: The Global Bridge.

[47]  Ramesh Pyndiah,et al.  Near-optimum decoding of product codes: block turbo codes , 1998, IEEE Trans. Commun..

[48]  Giuseppe Caire,et al.  On maximum-likelihood detection and the search for the closest lattice point , 2003, IEEE Trans. Inf. Theory.

[49]  Dariush Divsalar,et al.  Upper bounds to error probabilities of coded systems over AWGN and fading channels , 2000, Globecom '00 - IEEE. Global Telecommunications Conference. Conference Record (Cat. No.00CH37137).

[50]  Brian L. Hughes,et al.  On the error probability of signals in additive white Gaussian noise , 1991, IEEE Trans. Inf. Theory.

[51]  Alexander Vardy,et al.  Algebraic list-decoding of Reed-Solomon product codes , 2006 .

[52]  Alexander Vardy,et al.  Multivariate interpolation decoding beyond the Guruswami-Sudan radius , 2004 .

[53]  Ron M. Roth,et al.  Efficient decoding of Reed-Solomon codes beyond half the minimum distance , 2000, IEEE Trans. Inf. Theory.

[54]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[55]  Dariush Divsalar,et al.  Serial Concatenation of Interleaved Codes: Performance Analysis, Design, and Iterative Decoding , 1997, IEEE Trans. Inf. Theory.

[56]  Elwyn R. Berlekamp,et al.  On the inherent intractability of certain coding problems (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[57]  Vladimir M. Blinovsky,et al.  List decoding , 1992, Discret. Math..

[58]  Marc P. C. Fossorier,et al.  Sphere-packing bounds revisited for moderate block lengths , 2004, IEEE Transactions on Information Theory.

[59]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[60]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[61]  Stephan ten Brink,et al.  Achieving near-capacity on a multiple-antenna channel , 2003, IEEE Trans. Commun..

[62]  Shlomo Shamai,et al.  Tight exponential upper bounds on the ML decoding error probability of block codes over fully interleaved fading channels , 2003, IEEE Trans. Commun..

[63]  Sergio Benedetto,et al.  Unveiling turbo codes: some results on parallel concatenated coding schemes , 1996, IEEE Trans. Inf. Theory.

[64]  Joachim Hagenauer,et al.  Iterative decoding of binary block and convolutional codes , 1996, IEEE Trans. Inf. Theory.

[65]  Ralf Koetter,et al.  Exponential error bounds for algebraic soft-decision decoding of Reed-Solomon codes , 2004, IEEE Transactions on Information Theory.

[66]  R. Koetter,et al.  Performance analysis of the adaptive parity check matrix based soft-decision decoding algorithm , 2004, Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004..

[67]  Gregory Poltyrev,et al.  The error probability of M-ary PSK block coded modulation schemes , 1996, IEEE Trans. Commun..

[68]  En-Hui Yang,et al.  On the input-output weight enumerators of product accumulate codes , 2004, IEEE Communications Letters.

[69]  G. David Forney,et al.  Generalized minimum distance decoding , 1966, IEEE Trans. Inf. Theory.

[70]  Alexander Vardy,et al.  MDS array codes with independent parity symbols , 1995, Proceedings of 1995 IEEE International Symposium on Information Theory.

[71]  Alexander Vardy,et al.  Correcting errors beyond the Guruswami-Sudan radius in polynomial time , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[72]  Robert J. McEliece,et al.  Iterative Algebraic Soft Decision Decoding of Reed-Solomon Codes , 2004 .

[73]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[74]  Charles T. Retter The average binary weight-enumerator for a class of generalized Reed-Solomon codes , 1991, IEEE Trans. Inf. Theory.

[75]  Steven W. McLaughlin,et al.  Iterative application of the Chase algorithm on Reed-Solomon product codes , 2001, ICC 2001. IEEE International Conference on Communications. Conference Record (Cat. No.01CH37240).

[76]  Venkatesan Guruswami,et al.  Maximum-likelihood decoding of Reed-Solomon codes is NP-hard , 2004, SODA.

[77]  R. McEliece,et al.  Bounds on the Average Binary Minimum Distance and the Maximum Likelihood Performance of Reed , 2005 .

[78]  Joachim Hagenauer,et al.  A Viterbi algorithm with soft-decision outputs and its applications , 1989, IEEE Global Telecommunications Conference, 1989, and Exhibition. 'Communications Technology for the 1990s and Beyond.

[79]  Babak Hassibi,et al.  On the sphere-decoding algorithm I. Expected complexity , 2005, IEEE Transactions on Signal Processing.

[80]  Alex J. Grant,et al.  Soft-in soft-out decoding of Reed-Solomon codes based on Vardy and Be'ery's decomposition , 2005, IEEE Trans. Inf. Theory.

[81]  Robert J. McEliece,et al.  The partition weight enumerator of MDS codes and its applications , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[82]  Babak Hassibi,et al.  Performance of sphere decoding of block codes , 2006, IEEE Transactions on Communications.

[83]  Shu Lin,et al.  On combining Chase-2 and GMD decoding algorithms for nonbinary block codes , 2001, IEEE Communications Letters.

[84]  Robert J. McEliece,et al.  Iterative algebraic soft-decision list decoding of Reed-Solomon codes , 2005, IEEE Journal on Selected Areas in Communications.

[85]  S. Wicker Error Control Systems for Digital Communication and Storage , 1994 .

[86]  Jung-Fu Cheng,et al.  Turbo Decoding as an Instance of Pearl's "Belief Propagation" Algorithm , 1998, IEEE J. Sel. Areas Commun..

[87]  John G. Proakis,et al.  Digital Communications , 1983 .

[88]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[89]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[90]  D. Divsalar A Simple Tight Bound on Error Probability of Block Codes with Application to Turbo Codes , 1999 .

[91]  E.R. Berlekamp,et al.  The technology of error-correcting codes , 1980, Proceedings of the IEEE.

[92]  Panganamala Ramana Kumar,et al.  RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN , 2001 .

[93]  Ramin Rezaiifar,et al.  cdma2000/sup /spl reg// high rate broadcast packet data air interface design , 2004, IEEE Communications Magazine.

[94]  S. Baggen,et al.  Union bounds on the performance of product codes , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[95]  R. McEliece The Guruswami-Sudan Decoding Algorithm for Reed-Solomon Codes , 2003 .

[96]  Dariush Divsalar,et al.  Code Performance as a Function of Block Size , 1998 .

[97]  Venkatesan Guruswami,et al.  Explicit capacity-achieving list-decodable codes , 2005, STOC.

[98]  Don J. Torrieri Information-bit, information-symbol, and decoded-symbol error rates for linear block codes , 1988, IEEE Trans. Commun..

[99]  Shu Lin,et al.  Soft-decision decoding of linear block codes based on ordered statistics , 1994, IEEE Trans. Inf. Theory.