Dynamic remeshing and applications

Triangle meshes are a flexible and generally accepted boundary representation for complex geometric shapes. In addition to their geometric qualities or topological simplicity, intrinsic qualities such as the shape of the triangles, their distribution on the surface and the connectivity are essential for many algorithms working on them. In this paper we present a flexible and efficient remeshing framework that improves these intrinsic properties while keeping the mesh geometrically close to the original surface. We use a particle system approach and combine it with an incremental connectivity optimization process to trim the mesh towards the requirements imposed by the user. The particle system uniformly distributes the vertices on the mesh, whereas the connectivity optimization is done by means of Dynamic Connectivity Meshes, a combination of local topological operators that lead to a fairly regular connectivity. A dynamic skeleton ensures that our approach is able to preserve surface features, which are particularly important for the visual quality of the mesh. None of the algorithms requires a global parameterization or patch layouting in a preprocessing step but uses local parameterizations only. In particular we will sketch several application scenarios of our general framework and we will show how the users can adapt the involved algorithms in a way that the resulting remesh meets their personal requirements.

[1]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[2]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[3]  Lutz Kettner,et al.  Using generic programming for designing a data structure for polyhedral surfaces , 1999, Comput. Geom..

[4]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[5]  Carlo H. Séquin,et al.  Functional optimization for fair surface design , 1992, SIGGRAPH.

[6]  Marc Levoy,et al.  Zippered polygon meshes from range images , 1994, SIGGRAPH.

[7]  Steve Marschner,et al.  Filling holes in complex surfaces using volumetric diffusion , 2002, Proceedings. First International Symposium on 3D Data Processing Visualization and Transmission.

[8]  K. Hormann,et al.  MIPS: An Efficient Global Parametrization Method , 2000 .

[9]  William E. Lorensen,et al.  Decimation of triangle meshes , 1992, SIGGRAPH.

[10]  Zoë J. Wood,et al.  Topological Noise Removal , 2001, Graphics Interface.

[11]  Peter Schröder,et al.  Interactive multiresolution mesh editing , 1997, SIGGRAPH.

[12]  William Dunham,et al.  Journey through Genius: The Great Theorems of Mathematics , 1990 .

[13]  Martin Isenburg,et al.  Out-of-core compression for gigantic polygon meshes , 2003, ACM Trans. Graph..

[14]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[15]  Nicholas S. Sapidis Designing Fair Curves and Surfaces: Shape Quality in Geometric Modeling and Computer-Aided Design , 1994, Designing Fair Curves and Surfaces.

[16]  Hans-Peter Seidel,et al.  A Shrink Wrapping Approach to Remeshing Polygonal Surfaces , 1999, Comput. Graph. Forum.

[17]  David P. Luebke,et al.  View-dependent simplification of arbitrary polygonal environments , 1997, SIGGRAPH.

[18]  Mario Botsch,et al.  Feature sensitive surface extraction from volume data , 2001, SIGGRAPH.

[19]  Markus H. Gross,et al.  Multiresolution feature extraction for unstructured meshes , 2001, Proceedings Visualization, 2001. VIS '01..

[20]  Hugues Hoppe,et al.  Displaced subdivision surfaces , 2000, SIGGRAPH.

[21]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[22]  Yunjin Lee,et al.  Geometric Snakes for Triangular Meshes , 2002, Comput. Graph. Forum.

[23]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[24]  Steven J. Gortler,et al.  Geometry images , 2002, SIGGRAPH.

[25]  Peter Lindstrom,et al.  Out-of-core construction and visualization of multiresolution surfaces , 2003, I3D '03.

[26]  H. Borouchaki,et al.  Geometric surface mesh optimization , 1998 .

[27]  Pedro V. Sander,et al.  Signal-Specialized Parametrization , 2002, Rendering Techniques.

[28]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[29]  Hans-Peter Seidel,et al.  A Framework for Dynamic Connectivity Meshes , 2003 .

[30]  Hans-Peter Seidel,et al.  A General Framework for Mesh Decimation , 1998, Graphics Interface.

[31]  Pedro V. Sander,et al.  Multi-Chart Geometry Images , 2003, Symposium on Geometry Processing.

[32]  Peter Schröder,et al.  Normal meshes , 2000, SIGGRAPH.

[33]  Peter Lindstrom,et al.  Out-of-core simplification of large polygonal models , 2000, SIGGRAPH.

[34]  David R. Forsey,et al.  Surface fitting with hierarchical splines , 1995, TOGS.

[35]  Peter Schröder,et al.  Multiresolution signal processing for meshes , 1999, SIGGRAPH.

[36]  Peter Liepa,et al.  Filling Holes in Meshes , 2003, Symposium on Geometry Processing.

[37]  Mark Meyer,et al.  Interactive geometry remeshing , 2002, SIGGRAPH.

[38]  Christian Rössl,et al.  Feature Sensitive Remeshing , 2001, Comput. Graph. Forum.

[39]  Günther Greiner,et al.  Using most isometric parameterizations for remeshing polygonal surfaces , 2000, Proceedings Geometric Modeling and Processing 2000. Theory and Applications.

[40]  Tao Ju,et al.  Dual contouring of hermite data , 2002, ACM Trans. Graph..

[41]  Leif Kobbelt,et al.  √3-subdivision , 2000, SIGGRAPH.

[42]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[43]  Hans-Peter Seidel,et al.  Multiresolution hierarchies on unstructured triangle meshes , 1999, Comput. Geom..

[44]  Hans-Peter Seidel,et al.  Multiresolution Shape Deformations for Meshes with Dynamic Vertex Connectivity , 2000, Comput. Graph. Forum.

[45]  Mark Meyer,et al.  Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.

[46]  Seungyong Lee,et al.  Interactive Multiresolution Editing of Arbitrary Meshes , 1999, Comput. Graph. Forum.

[47]  R. Ho Algebraic Topology , 2022 .

[48]  Peter J.C. Brown,et al.  A robust efficient algorithm for point location in triangulations , 1997 .

[49]  John E. Howland,et al.  Computer graphics , 1990, IEEE Potentials.

[50]  Gerald E. Farin,et al.  Curves and surfaces for computer-aided geometric design - a practical guide, 4th Edition , 1997, Computer science and scientific computing.

[51]  Marc Levoy,et al.  Fitting smooth surfaces to dense polygon meshes , 1996, SIGGRAPH.

[52]  Christian Rössl,et al.  Dynamic remeshing and applications , 2003, SM '03.

[53]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[54]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[55]  Andrei Khodakovsky,et al.  Globally smooth parameterizations with low distortion , 2003, ACM Trans. Graph..

[56]  Alla Sheffer,et al.  Geodesic-based Surface Remeshing , 2003, IMR.

[57]  Leif Kobbelt,et al.  OpenMesh: A Generic and Efficient Polygon Mesh Data Structure , 2002 .

[58]  Fausto Bernardini,et al.  Cut-and-paste editing of multiresolution surfaces , 2002, SIGGRAPH.

[59]  Leif Kobbelt,et al.  Multiresolution Surface Representation Based on Displacement Volumes , 2003, Comput. Graph. Forum.

[60]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[61]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[62]  Andrew P. Witkin,et al.  Free-form shape design using triangulated surfaces , 1994, SIGGRAPH.

[63]  Pierre Alliez,et al.  Isotropic Remeshing of Surfaces: A Local Parameterization Approach , 2003, IMR.

[64]  Hans-Peter Seidel,et al.  Interactive multi-resolution modeling on arbitrary meshes , 1998, SIGGRAPH.

[65]  Leif Kobbelt,et al.  Simplification and Compression of 3D Meshes , 2002, Tutorials on Multiresolution in Geometric Modelling.

[66]  Craig Gotsman,et al.  Explicit Surface Remeshing , 2003, Symposium on Geometry Processing.

[67]  Dani Lischinski,et al.  Bounded-distortion piecewise mesh parameterization , 2002, IEEE Visualization, 2002. VIS 2002..

[68]  W. Boehm,et al.  Bezier and B-Spline Techniques , 2002 .

[69]  Jarek Rossignac,et al.  Simplification and Compression of 3D Scenes , 1997, Eurographics.

[70]  Andrei Khodakovsky,et al.  Progressive geometry compression , 2000, SIGGRAPH.

[71]  Greg Turk,et al.  Re-tiling polygonal surfaces , 1992, SIGGRAPH.

[72]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[73]  Tamás Várady,et al.  Reverse engineering B-rep models from multiple point clouds , 2000, Proceedings Geometric Modeling and Processing 2000. Theory and Applications.

[74]  Hans-Peter Seidel,et al.  Recovering structural information from triangulated surfaces , 2001 .

[75]  Martin Isenburg,et al.  Isotropic surface remeshing , 2003, 2003 Shape Modeling International..

[76]  Pierre Alliez,et al.  Progressive compression for lossless transmission of triangle meshes , 2001, SIGGRAPH.

[77]  Tony DeRose,et al.  Multiresolution analysis for surfaces of arbitrary topological type , 1997, TOGS.

[78]  Andrei Alexandrescu,et al.  Modern C++ design: generic programming and design patterns applied , 2001 .

[79]  David P. Dobkin,et al.  MAPS: multiresolution adaptive parameterization of surfaces , 1998, SIGGRAPH.

[80]  Gabriel Taubin,et al.  Estimating the tensor of curvature of a surface from a polyhedral approximation , 1995, Proceedings of IEEE International Conference on Computer Vision.

[81]  Pierre Alliez,et al.  Anisotropic polygonal remeshing , 2003, ACM Trans. Graph..

[82]  Günther Greiner,et al.  Interpolatory sqrt(3)-Subdivision , 2000, Comput. Graph. Forum.

[83]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.

[84]  Jarek Rossignac,et al.  Multi-resolution 3D approximations for rendering complex scenes , 1993, Modeling in Computer Graphics.