Performance of JAXA’s SGLI standard ocean color products for oceanic to coastal waters: chlorophyll a concentration and light absorption coefficients of colored dissolved organic matter

[1]  Stanford B. Hooker,et al.  One- and Two-Band Sensors and Algorithms to Derive aCDOM(440) from Global Above- and In-Water Optical Observations , 2021, Sensors.

[2]  R. Kudela,et al.  Spectral modes of radiometric measurements in optically complex waters , 2021 .

[3]  K. Stamnes,et al.  OC-SMART: A machine learning based data analysis platform for satellite ocean color sensors , 2021 .

[4]  C. Barbosa,et al.  A Chlorophyll-a Algorithm for Landsat-8 Based on Mixture Density Networks , 2021, Frontiers in Remote Sensing.

[5]  R. Kudela,et al.  Spectral range within global aCDOM(440) algorithms for oceanic, coastal, and inland waters with application to airborne measurements , 2020 .

[6]  C. Giardino,et al.  Hyperspectral retrievals of phytoplankton absorption and chlorophyll-a in inland and nearshore coastal waters , 2020 .

[7]  B. Matsushita,et al.  Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal waters: A machine-learning approach , 2020, Remote Sensing of Environment.

[8]  Alison P. Chase,et al.  IOCCG Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor ValidationInherent Optical Property Measurements and Protocols: Best Practices for the Collection and Processing of Ship-Based Underway Flow-Through Optical Data (v4.0) , 2019 .

[9]  Richard W. Gould,et al.  An Ocean-Colour Time Series for Use in Climate Studies: The Experience of the Ocean-Colour Climate Change Initiative (OC-CCI) , 2019, Sensors.

[10]  Peter D. Hunter,et al.  A global approach for chlorophyll-a retrieval across optically complex inland waters based on optical water types , 2019, Remote Sensing of Environment.

[11]  R. Kudela,et al.  A global end-member approach to derive aCDOM(440) from near-surface optical measurements , 2019, Biogeosciences.

[12]  Robert Frouin,et al.  A compilation of global bio-optical in situ data for ocean-colour satellite applications – version two , 2015, Earth System Science Data.

[13]  James W. Brown,et al.  . 1 Advances in Above-and In-Water Radiometry , Volume 1 : Enhanced Legacy and State-ofthe-Art Instrument Suites , 2019 .

[14]  James W. Brown,et al.  Advances in Above- and In-Water Radiometry, Volume 2: Autonomous Atmospheric and Oceanic Observing Systems , 2018 .

[15]  Kazuhiro Tanaka,et al.  First year on-orbit calibration activities of SGLI on GCOM-C satellite , 2018, Asia-Pacific Remote Sensing.

[16]  J. Nishioka,et al.  Responses of phytoplankton assemblages to iron availability and mixing water masses during the spring bloom in the Oyashio region, NW Pacific , 2018, Limnology and Oceanography.

[17]  Kazuhiro Tanaka,et al.  In-orbit commissioning activities results of GCOM-C /SGLI , 2018, Remote Sensing.

[18]  Nasa The Second SeaWiFS HPLC Analysis Round-Robin Experiment (SeaHARRE-2) , 2018 .

[19]  P Jeremy Werdell,et al.  Performance metrics for the assessment of satellite data products: an ocean color case study. , 2018, Optics express.

[20]  C. Jamet,et al.  An Inverse Model for Estimating the Optical Absorption and Backscattering Coefficients of Seawater From Remote-Sensing Reflectance Over a Broad Range of Oceanic and Coastal Marine Environments: INVERSION OF SEAWATER IOPS , 2018 .

[21]  Igor Ogashawara,et al.  Optical types of inland and coastal waters , 2017 .

[22]  K. Stamnes,et al.  Atmospheric correction over coastal waters using multilayer neural networks , 2017 .

[23]  R. Doerffer,et al.  The OLCI Neural Network Swarm (ONNS): A Bio-Geo-Optical Algorithm for Open Ocean and Coastal Waters , 2017, Front. Mar. Sci..

[24]  Koji Suzuki,et al.  Characterization of the synoptic‐scale diversity, biogeography, and size distribution of diatoms in the North Pacific , 2017 .

[25]  K. Stamnes,et al.  A neural network method to correct bidirectional effects in water-leaving radiance , 2017 .

[26]  Bryan A. Franz,et al.  Atmospheric Correction for Satellite Ocean Color Radiometry , 2016 .

[27]  K. Stamnes,et al.  Neural network method to correct bidirectional effects in water-leaving radiance. , 2016, Applied optics.

[28]  H. Saito,et al.  Mixed layer depth and chlorophyll a: Profiling float observations in the Kuroshio–Oyashio Extension region , 2015 .

[29]  Dariusz Stramski,et al.  Correction of pathlength amplification in the filter-pad technique for measurements of particulate absorption coefficient in the visible spectral region. , 2015, Applied optics.

[30]  Peter Regner,et al.  The Ocean Colour Climate Change Initiative: I. A methodology for assessing atmospheric correction processors based on in-situ measurements , 2015 .

[31]  Hui Feng,et al.  Characterizing the uncertainties in spectral remote sensing reflectance for SeaWiFS and MODIS-Aqua based on global in situ matchup data sets , 2015 .

[32]  Frédéric Mélin,et al.  Band shifting for ocean color multi-spectral reflectance data. , 2015, Optics express.

[33]  B. Nechad,et al.  CoastColour Round Robin data sets: a database to evaluate the performance of algorithms for the retrieval of water quality parameters in coastal waters , 2015 .

[34]  Arun Kumar,et al.  Journal of Geophysical Research: Oceans , 2015 .

[35]  A. Matsuoka,et al.  Apparent optical properties of the Canadian Beaufort Sea – Part 2: The 1% and 1 cm perspective in deriving and validating AOP data products , 2013 .

[36]  D. Antoine,et al.  Apparent optical properties of the Canadian Beaufort Sea - Part 1: Observational overview and water column relationships , 2013 .

[37]  D. Siegel,et al.  The global distribution and dynamics of chromophoric dissolved organic matter. , 2013, Annual review of marine science.

[38]  Stanford B. Hooker,et al.  Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space , 2012 .

[39]  Marcel Babin,et al.  Tracing the transport of colored dissolved organic matter in water masses of the Southern Beaufort Sea: relationship with hydrographic characteristics , 2011 .

[40]  Giuseppe Zibordi,et al.  An inherent-optical-property-centered approach to correct the angular effects in water-leaving radiance. , 2011, Applied optics.

[41]  François Steinmetz,et al.  Atmospheric correction in presence of sun glint: application to MERIS. , 2011, Optics express.

[42]  James W. Brown,et al.  Advances in Measuring the Apparent Optical Properties (AOPs) of Optically Complex Waters , 2010 .

[43]  P Jeremy Werdell,et al.  Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing. , 2010, Optics express.

[44]  D. Pauly,et al.  Remote Sensing in Fisheries and Aquaculture 2 . 1 Climate Change , Ocean Temperature and Productivity 2 , 2010 .

[45]  P. J. Werdell,et al.  A multi-sensor approach for the on-orbit validation of ocean color satellite data products , 2006 .

[46]  P. J. Werdell,et al.  An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation , 2005 .

[47]  K. Ruddick,et al.  Model of remote-sensing reflectance including bidirectional effects for case 1 and case 2 waters. , 2005, Applied optics.

[48]  D. Stramski,et al.  An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea , 2004 .

[49]  PANDelu,et al.  Atmospheric correction of Sea WiFS imagery for turbid coastal and inland waters , 2004 .

[50]  Dariusz Stramski,et al.  Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe , 2003 .

[51]  D. Antoine,et al.  Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function. , 2002, Applied optics.

[52]  R. Arnone,et al.  Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. , 2002, Applied optics.

[53]  Stéphane Maritorena,et al.  Optimization of a semianalytical ocean color model for global-scale applications. , 2002, Applied optics.

[54]  G. Zibordi,et al.  An Evaluation of Above- and In-Water Methods for Determining Water-Leaving Radiances , 2002 .

[55]  C. Mobley,et al.  Phase function effects on oceanic light fields. , 2002, Applied optics.

[56]  Hui Feng,et al.  A fuzzy logic classification scheme for selecting and blending satellite ocean color algorithms , 2001, IEEE Trans. Geosci. Remote. Sens..

[57]  S. Maritorena,et al.  Bio-optical properties of oceanic waters: A reappraisal , 2001 .

[58]  André Morel,et al.  Non-isotropy of the upward radiance field in typical coastal (Case 2) waters , 2001 .

[59]  K. Ruddick,et al.  Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters. , 2000, Applied optics.

[60]  Prieur,et al.  Analysis of variations in ocean color’ , 2000 .

[61]  C. Mobley,et al.  Estimation of the remote-sensing reflectance from above-surface measurements. , 1999, Applied optics.

[62]  Marcel Babin,et al.  Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models , 1998 .

[63]  D. Siegel,et al.  Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: 1. Time series from the Sargasso Sea , 1997 .

[64]  B. Gentili,et al.  Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem. , 1996, Applied optics.

[65]  Janet W. Campbell,et al.  The lognormal distribution as a model for bio‐optical variability in the sea , 1995 .

[66]  H. Claustre,et al.  Variability in the chlorophyll‐specific absorption coefficients of natural phytoplankton: Analysis and parameterization , 1995 .

[67]  C. Mobley Light and Water: Radiative Transfer in Natural Waters , 1994 .

[68]  Menghua Wang,et al.  Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm. , 1994, Applied optics.

[69]  B Gentili,et al.  Diffuse reflectance of oceanic waters. II Bidirectional aspects. , 1993, Applied optics.

[70]  B Gentili,et al.  Diffuse reflectance of oceanic waters: its dependence on Sun angle as influenced by the molecular scattering contribution. , 1991, Applied optics.

[71]  James W. Brown,et al.  A semianalytic radiance model of ocean color , 1988 .

[72]  A. Morel Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters) , 1988 .

[73]  H. Gordon,et al.  Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review , 1983 .

[74]  J. W. Brown,et al.  Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates. , 1983, Applied optics.

[75]  H. Gordon,et al.  Clear water radiances for atmospheric correction of coastal zone color scanner imagery. , 1981, Applied optics.

[76]  L. Prieur,et al.  Analysis of variations in ocean color1 , 1977 .

[77]  W. Mccluney,et al.  Estimation of the depth of sunlight penetration in the sea for remote sensing. , 1975, Applied optics.

[78]  R. W. Austin The remote sensing of spectral radiance from below the ocean surface , 1974 .