Bayesian inversion of marine CSEM data from the Scarborough gas field using a transdimensional 2-D parametrization

SUMMARY We apply a reversible-jump Markov chain Monte Carlo method to sample the Bayesian posterior model probability density function of 2-D seafloor resistivity as constrained by marine controlled source electromagnetic data. This density function of earth models conveys information on which parts of the model space are illuminated by the data. Whereas conventional gradient-based inversion approaches require subjective regularization choices to stabilize this highly non-linear and non-unique inverse problem and provide only a single solution with no model uncertainty information, the method we use entirely avoids model regularization. The result of our approach is an ensemble of models that can be visualized and queried to provide meaningful information about the sensitivity of the data to the subsurface, and the level of resolutionofmodelparameters.Werepresentmodelsin2-DusingaVoronoicellparametrization. Tomakethe2-Dproblempractical,weuseasource–receivercommonmidpointapproximation with 1-D forward modelling. Our algorithm is transdimensional and self-parametrizing where the number of resistivity cells within a 2-D depth section is variable, as are their positions and geometries. Two synthetic studies demonstrate the algorithm’s use in the appraisal of a thin, segmented, resistive reservoir which makes for a challenging exploration target. As a demonstration example, we apply our method to survey data collected over the Scarborough gas field on the Northwest Australian shelf.

[1]  Michael E. Glinsky,et al.  Marine CSEM of the Scarborough gas field, Part 1: Experimental design and data uncertainty , 2012 .

[2]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[3]  Fast marine CSEM inversion in the CMP domain using analytical derivatives , 2011 .

[4]  Aria Abubakar,et al.  2.5D forward and inverse modeling for interpreting low-frequency electromagnetic measurements , 2008 .

[5]  Stan E. Dosso,et al.  Trans-dimensional inversion of microtremor array dispersion data with hierarchical autoregressive error models , 2012 .

[6]  George E. Backus,et al.  Bayesian inference in geomagnetism , 1988 .

[8]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .

[9]  Peter Gerstoft,et al.  Sequential Bayesian techniques applied to non-volcanic tremor , 2012 .

[10]  Christopher Holmes,et al.  Bayesian Methods for Nonlinear Classification and Regressing , 2002 .

[11]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[12]  Andrew Binley,et al.  A Bayesian trans-dimensional approach for the fusion of multiple geophysical datasets , 2013 .

[13]  N. Driscoll,et al.  Lower crustal extension across the Northern Carnarvon basin, Australia: Evidence for an eastward dipping detachment , 1998 .

[14]  M. Sambridge,et al.  Trans-dimensional inverse problems, model comparison and the evidence , 2006 .

[15]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[16]  Malcolm Sambridge,et al.  Parallel tempering for strongly nonlinear geoacoustic inversion. , 2012, The Journal of the Acoustical Society of America.

[17]  Jan Dettmer,et al.  Trans-dimensional matched-field geoacoustic inversion with hierarchical error models and interacting Markov chains. , 2012, The Journal of the Acoustical Society of America.

[18]  Jan Dettmer,et al.  Trans-dimensional joint inversion of seabed scattering and reflection data. , 2013, The Journal of the Acoustical Society of America.

[19]  Roel Snieder,et al.  To Bayes or not to Bayes , 1997 .

[20]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[21]  Jan Dettmer,et al.  Sequential trans-dimensional Monte Carlo for range-dependent geoacoustic inversion. , 2011, The Journal of the Acoustical Society of America.

[22]  C. Cox,et al.  Electromagnetic active source sounding near the East Pacific Rise , 1981 .

[23]  David J. Spiegelhalter,et al.  Introducing Markov chain Monte Carlo , 1995 .

[24]  Malcolm Sambridge,et al.  Transdimensional inversion of receiver functions and surface wave dispersion , 2012 .

[25]  D. Connell,et al.  A numerical comparison of time and frequency‐domain marine electromagnetic methods for hydrocarbon exploration in shallow water , 2013 .

[26]  P. P. Vaidyanathan,et al.  Signal Processing and Optimization for Transceiver Systems , 2010 .

[27]  M. Sambridge,et al.  Global P wave tomography of Earth's lowermost mantle from partition modeling , 2013 .

[28]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[29]  C. Geyer Markov Chain Monte Carlo Maximum Likelihood , 1991 .

[30]  Thomas Bodin,et al.  Hierarchical Bayesian Inversion of Marine CSEM Data Over the Scarborough Gas Field - A Lesson in Correlated Noise , 2013 .

[31]  Kerry Key,et al.  Broad-band waveforms and robust processing for marine CSEM surveys , 2011 .

[32]  Chester J. Weiss,et al.  Mapping thin resistors and hydrocarbons with marine EM methods: Insights from 1D modeling , 2006 .

[33]  R. Parker,et al.  Occam's inversion; a practical algorithm for generating smooth models from electromagnetic sounding data , 1987 .

[34]  G. Newman,et al.  Three-dimensional magnetotelluric inversion using non-linear conjugate gradients , 2000 .

[35]  Svein Ellingsrud,et al.  The Meter Reader—Remote sensing of hydrocarbon layers by seabed logging (SBL): Results from a cruise offshore Angola , 2002 .

[36]  Jan Dettmer,et al.  Trans-dimensional geoacoustic inversion. , 2010, The Journal of the Acoustical Society of America.

[37]  B. Ursin,et al.  Low-frequency electromagnetic fields in applied geophysics: Waves or diffusion? , 2006 .

[38]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[39]  M. Sambridge,et al.  Seismic tomography with the reversible jump algorithm , 2009 .

[40]  S. Constable Ten years of marine CSEM for hydrocarbon exploration , 2010 .

[41]  Jinsong Chen,et al.  Stochastic inversion of magnetotelluric data using a sharp boundary parameterization and application to a geothermal site , 2012 .

[42]  A. Malinverno,et al.  Receiver function inversion by trans‐dimensional Monte Carlo sampling , 2010 .

[43]  Albert Tarantola,et al.  Monte Carlo sampling of solutions to inverse problems , 1995 .

[44]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[45]  Malcolm Sambridge,et al.  A Parallel Tempering algorithm for probabilistic sampling and multimodal optimization , 2014 .

[46]  N. Rawlinson,et al.  Transdimensional inversion of ambient seismic noise for 3D shear velocity structure of the Tasmanian crust , 2013 .

[47]  Anandaroop Ray,et al.  Bayesian inversion of marine CSEM data with a trans‐dimensional self parametrizing algorithm , 2012 .

[48]  R. Mittet,et al.  Decomposition in upgoing and downgoing fields and inversion of marine CSEM data , 2013 .

[49]  Constraining the shape of a gravity anomalous body using reversible jump Markov chain Monte Carlo , 2010, 1002.1113.

[50]  Whitney Trainor-Guitton,et al.  Stochastic inversion for electromagnetic geophysics: Practical challenges and improving convergence efficiency , 2011 .

[51]  Alberto Malinverno,et al.  Expanded uncertainty quantification in inverse problems: Hierarchical Bayes and empirical Bayes , 2004 .

[52]  Kerry Key,et al.  1D inversion of multicomponent, multifrequency marine CSEM data: Methodology and synthetic studies for resolving thin resistive layers , 2009 .

[53]  Alan D. Chave,et al.  Controlled electromagnetic sources for measuring electrical conductivity beneath the oceans: 1. Forward problem and model study , 1982 .

[54]  Chester J. Weiss The fallacy of the “shallow-water problem” in marine CSEM exploration , 2007 .

[55]  Malcolm Sambridge,et al.  Transdimensional Monte Carlo Inversion of AEM Data , 2012 .

[56]  R. Carroll,et al.  Advanced Markov Chain Monte Carlo Methods: Learning from Past Samples , 2010 .

[57]  Steven Constable,et al.  Marine electromagnetic methods—A new tool for offshore exploration , 2006 .

[58]  David L. Alumbaugh,et al.  Robust and accelerated Bayesian inversion of marine controlled-source electromagnetic data using parallel tempering , 2013 .

[59]  Jeffrey S. Ovall,et al.  A parallel goal-oriented adaptive finite element method for 2.5-D electromagnetic modelling , 2011 .

[60]  R. Mittet,et al.  CMP inversion and post-inversion modelling for marine CSEM data , 2008 .

[61]  Y. Rubin,et al.  A Bayesian model for gas saturation estimation using marine seismic AVA and CSEM data , 2007 .

[62]  A. Buland,et al.  Bayesian inversion of CSEM and magnetotelluric data , 2012 .

[63]  T. Louis,et al.  Bayes and Empirical Bayes Methods for Data Analysis. , 1997 .

[64]  Radford M. Neal Slice Sampling , 2003, The Annals of Statistics.

[65]  M. Glinsky,et al.  Resolution and uncertainty in 1D CSEM inversion: A Bayesian approach and open-source implementation , 2010 .

[66]  Jan Dettmer,et al.  Probabilistic two-dimensional water-column and seabed inversion with self-adapting parameterizations. , 2013, The Journal of the Acoustical Society of America.

[67]  Y. Rubin,et al.  Reservoir-parameter identification using minimum relative entropy-based Bayesian inversion of seismic AVA and marine CSEM data , 2006 .

[68]  Scott A. Sisson,et al.  Transdimensional Markov Chains , 2005 .

[69]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[70]  S. Walker Invited comment on the paper "Slice Sampling" by Radford Neal , 2003 .

[71]  A.,et al.  Inverse Problems = Quest for Information , 2022 .

[72]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[73]  T. Bayes An essay towards solving a problem in the doctrine of chances , 2003 .

[74]  B. Minsley A trans-dimensional Bayesian Markov chain Monte Carlo algorithm for model assessment using frequency-domain electromagnetic data , 2011 .

[75]  M. Sambridge,et al.  Transdimensional inference in the geosciences , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[76]  A. Malinverno Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem , 2002 .

[77]  S. Constable,et al.  Magnetotelluric evidence for layered mafic intrusions beneath the Vøring and Exmouth rifted margins , 2013 .

[78]  J. A. Vrugt,et al.  Two-dimensional probabilistic inversion of plane-wave electromagnetic data: Methodology, model constraints and joint inversion with electrical resistivity data , 2014, 1701.02540.