Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions

This paper presents an overview of the field of recommender systems and describes the current generation of recommendation methods that are usually classified into the following three main categories: content-based, collaborative, and hybrid recommendation approaches. This paper also describes various limitations of current recommendation methods and discusses possible extensions that can improve recommendation capabilities and make recommender systems applicable to an even broader range of applications. These extensions include, among others, an improvement of understanding of users and items, incorporation of the contextual information into the recommendation process, support for multicriteria ratings, and a provision of more flexible and less intrusive types of recommendations.

[1]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[2]  David G. Stork,et al.  Pattern Classification , 1973 .

[3]  Jean Duchon,et al.  Splines minimizing rotation-invariant semi-norms in Sobolev spaces , 1976, Constructive Theory of Functions of Several Variables.

[4]  Elaine Rich,et al.  User Modeling via Stereotypes , 1998, Cogn. Sci..

[5]  M. Powell,et al.  Approximation theory and methods , 1984 .

[6]  David C. Schmittlein,et al.  Counting Your Customers: Who-Are They and What Will They Do Next? , 1987 .

[7]  Gerald Salton,et al.  Automatic text processing , 1988 .

[8]  G. Nürnberger Approximation by Spline Functions , 1989 .

[9]  W. Bruce Croft,et al.  Information filtering and information retrieval: two sides of the same coin? , 1992, CACM.

[10]  Douglas B. Terry,et al.  Using collaborative filtering to weave an information tapestry , 1992, CACM.

[11]  Pattie Maes,et al.  Evolving agents for personalized information filtering , 1993, Proceedings of 9th IEEE Conference on Artificial Intelligence for Applications.

[12]  David A. Cohn,et al.  Active Learning with Statistical Models , 1996, NIPS.

[13]  Manfred K. Warmuth,et al.  The Weighted Majority Algorithm , 1994, Inf. Comput..

[14]  John Riedl,et al.  GroupLens: an open architecture for collaborative filtering of netnews , 1994, CSCW '94.

[15]  David D. Lewis,et al.  Heterogeneous Uncertainty Sampling for Supervised Learning , 1994, ICML.

[16]  Ken Lang,et al.  NewsWeeder: Learning to Filter Netnews , 1995, ICML.

[17]  Heikki Mannila,et al.  Discovering Frequent Episodes in Sequences , 1995, KDD.

[18]  Roman B. Statnikov,et al.  Multicriteria Optimization and Engineering , 1995 .

[19]  Pattie Maes,et al.  Social information filtering: algorithms for automating “word of mouth” , 1995, CHI '95.

[20]  Mark Rosenstein,et al.  Recommending and evaluating choices in a virtual community of use , 1995, CHI '95.

[21]  Tom Fawcett,et al.  Combining Data Mining and Machine Learning for Effective User Profiling , 1996, KDD.

[22]  Yoram Singer,et al.  Learning to Order Things , 1997, NIPS.

[23]  David A. Hull The TREC-6 Filtering Track: Description and Analysis , 1997, TREC.

[24]  F. Dwyer Customer lifetime valuation to support marketing decision making , 1997 .

[25]  Bradley N. Miller,et al.  GroupLens: applying collaborative filtering to Usenet news , 1997, CACM.

[26]  Surajit Chaudhuri,et al.  An overview of data warehousing and OLAP technology , 1997, SGMD.

[27]  Krishna Kumar,et al.  Learn Sesame, a Learning Agent Engine , 1997, Appl. Artif. Intell..

[28]  Yoav Shoham,et al.  Fab: content-based, collaborative recommendation , 1997, CACM.

[29]  Loren Terveen,et al.  PHOAKS: a system for sharing recommendations , 1997, CACM.

[30]  David A. Hull The TREC-7 Filtering Track: Description and Analysis , 1998, Text Retrieval Conference.

[31]  Raymond J. Mooney and Paul N. Bennett and Loriene Roy Book Recommending Using Text Categorization with Extracted Information , 1998 .

[32]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[33]  Ravi Kumar,et al.  Recommendation systems: a probabilistic analysis , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[34]  John Riedl,et al.  Recommender Systems: A GroupLens Perspective , 1998 .

[35]  Yoram Singer,et al.  An Efficient Boosting Algorithm for Combining Preferences by , 2013 .

[36]  Naoki Abe,et al.  Collaborative Filtering Using Weighted Majority Prediction Algorithms , 1998, ICML.

[37]  William W. Cohen,et al.  Recommendation as Classification: Using Social and Content-Based Information in Recommendation , 1998, AAAI/IAAI.

[38]  Dean P. Foster,et al.  Clustering Methods for Collaborative Filtering , 1998, AAAI 1998.

[39]  Douglas W. Oard,et al.  Implicit Feedback for Recommender Systems , 1998 .

[40]  Michael J. Pazzani,et al.  Learning Collaborative Information Filters , 1998, ICML.

[41]  John Riedl,et al.  Combining Collaborative Filtering with Personal Agents for Better Recommendations , 1999, AAAI/IAAI.

[42]  Philip S. Yu,et al.  Horting hatches an egg: a new graph-theoretic approach to collaborative filtering , 1999, KDD '99.

[43]  Mark Claypool,et al.  Combining Content-Based and Collaborative Filters in an Online Newspaper , 1999, SIGIR 1999.

[44]  John Riedl,et al.  An algorithmic framework for performing collaborative filtering , 1999, SIGIR '99.

[45]  Thomas Hofmann,et al.  Probabilistic Latent Semantic Analysis , 1999, UAI.

[46]  Lise Getoor,et al.  Using Probabilistic Relational Models for Collaborative Filtering , 1999 .

[47]  Naohiro Ishii,et al.  Memory-Based Weighted-Majority Prediction for Recommender Systems , 1999, SIGIR 1999.

[48]  Michael J. Pazzani,et al.  A personal news agent that talks, learns and explains , 1999, AGENTS '99.

[49]  Christian Posse,et al.  Bayesian Mixed-Effects Models for Recommender Systems , 1999 .

[50]  Edward I. George,et al.  A bayesian model for collaborative filtering , 1999, AISTATS.

[51]  Ian Soboroff. Charles Nicholas Combining Content and Collaboration in Text Filtering , 1999 .

[52]  Loriene Roy,et al.  Content-based book recommending using learning for text categorization , 1999, DL '00.

[53]  Anne Rogers,et al.  Hancock: a language for extracting signatures from data streams , 2000, KDD '00.

[54]  Eric Horvitz,et al.  Collaborative Filtering by Personality Diagnosis: A Hybrid Memory and Model-Based Approach , 2000, UAI.

[55]  Robin Cohen,et al.  Hybrid Recommender Systems for Electronic Commerce , 2000 .

[56]  R. Kohli,et al.  Internet Recommendation Systems , 2000 .

[57]  John Riedl,et al.  Explaining collaborative filtering recommendations , 2000, CSCW '00.

[58]  John Riedl,et al.  Application of Dimensionality Reduction in Recommender System - A Case Study , 2000 .

[59]  Robin Burke,et al.  Knowledge-based recommender systems , 2000 .

[60]  Stephen E. Robertson,et al.  Threshold setting in adaptive filtering , 2000, J. Documentation.

[61]  R. Schaback,et al.  Characterization and construction of radial basis functions , 2001 .

[62]  Joseph A. Konstan,et al.  Content-Independent Task-Focused Recommendation , 2001, IEEE Internet Comput..

[63]  Gediminas Adomavicius,et al.  Multidimensional Recommender Systems: A Data Warehousing Approach , 2001, WELCOM.

[64]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[65]  Yi Zhang,et al.  Maximum likelihood estimation for filtering thresholds , 2001, SIGIR '01.

[66]  Ravi Kumar,et al.  Recommendation Systems , 2001 .

[67]  Wee Sun Lee Collaborative Learning for Recommender Systems , 2001 .

[68]  Adele E. Howe,et al.  Adaptive Lightweight Text Filtering , 2001, IDA.

[69]  Wee Sun Lee Collaborative Learning and Recommender Systems , 2001, ICML.

[70]  Naren Ramakrishnan,et al.  Privacy Risks in Recommender Systems , 2001, IEEE Internet Comput..

[71]  M. Buhmann Multivariate Approximation and Applications: Approximation and interpolation with radial functions , 2001 .

[72]  On Evaluating Online Personalization , 2001 .

[73]  David M. Pennock,et al.  Probabilistic Models for Unified Collaborative and Content-Based Recommendation in Sparse-Data Environments , 2001, UAI.

[74]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[75]  David M. Pennock,et al.  Methods and metrics for cold-start recommendations , 2002, SIGIR '02.

[76]  Michael J. Pazzani,et al.  Adaptive interfaces for ubiquitous web access , 2002, CACM.

[77]  Yi Zhang,et al.  Novelty and redundancy detection in adaptive filtering , 2002, SIGIR '02.

[78]  Raymond J. Mooney,et al.  Content-boosted collaborative filtering for improved recommendations , 2002, AAAI/IAAI.

[79]  David M. Pennock,et al.  A Maximum Entropy Approach to Collaborative Filtering in Dynamic, Sparse, High-Dimensional Domains , 2002, NIPS.

[80]  Guy Shani,et al.  An MDP-Based Recommender System , 2002, J. Mach. Learn. Res..

[81]  Hans-Peter Kriegel,et al.  Instance Selection Techniques for Memory-based Collaborative Filtering , 2002, SDM.

[82]  Yizhak Idan,et al.  Customer lifetime value modeling and its use for customer retention planning , 2002, KDD.

[83]  Jaideep Srivastava,et al.  WEBKDD 2002 - Mining Web Data for Discovering Usage Patterns and Profiles , 2003, Lecture Notes in Computer Science.

[84]  Sean M. McNee,et al.  Getting to know you: learning new user preferences in recommender systems , 2002, IUI '02.

[85]  Clayton C. Peddy,et al.  Building Solutions with Microsoft Commerce Server 2002 , 2003 .

[86]  Chrysanthos Dellarocas The Digitization of Word-of-Mouth: Promise and Challenges of Online Feedback Mechanisms , 2003 .

[87]  Thomas Hofmann,et al.  Collaborative filtering via gaussian probabilistic latent semantic analysis , 2003, SIGIR.

[88]  Luo Si,et al.  Collaborative filtering with decoupled models for preferences and ratings , 2003, CIKM '03.

[89]  Luo Si,et al.  Flexible Mixture Model for Collaborative Filtering , 2003, ICML.

[90]  Benjamin M. Marlin,et al.  Modeling User Rating Profiles For Collaborative Filtering , 2003, NIPS.

[91]  Bradley N. Miller,et al.  MovieLens unplugged: experiences with an occasionally connected recommender system , 2003, IUI '03.

[92]  Chrysanthos Dellarocas,et al.  The Digitization of Word-of-Mouth: Promise and Challenges of Online Feedback Mechanisms , 2003, Manag. Sci..

[93]  Luo Si,et al.  Preference-based Graphic Models for Collaborative Filtering , 2002, UAI.

[94]  Greg Linden,et al.  Amazon . com Recommendations Item-to-Item Collaborative Filtering , 2001 .

[95]  Sumit Sarkar,et al.  The Role of the Management Sciences in Research on Personalization , 2003, Manag. Sci..

[96]  H. Sebastian Seung,et al.  Selective Sampling Using the Query by Committee Algorithm , 1997, Machine Learning.

[97]  Philip S. Yu Editorial: State of the Transactions , 2004, IEEE Trans. Knowl. Data Eng..

[98]  Thomas Hofmann,et al.  Latent semantic models for collaborative filtering , 2004, TOIS.

[99]  Stuart E. Middleton,et al.  Ontological user profiling in recommender systems , 2004, TOIS.

[100]  Michael J. Pazzani,et al.  User Modeling for Adaptive News Access , 2000, User Modeling and User-Adapted Interaction.

[101]  George Karypis,et al.  Item-based top-N recommendation algorithms , 2004, TOIS.

[102]  Hans-Peter Kriegel,et al.  Ieee Transactions on Knowledge and Data Engineering Probabilistic Memory-based Collaborative Filtering , 2022 .

[103]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[104]  Michael J. Pazzani,et al.  Learning and Revising User Profiles: The Identification of Interesting Web Sites , 1997, Machine Learning.

[105]  Osmar R. Zaïane,et al.  Combining Usage, Content, and Structure Data to Improve Web Site Recommendation , 2004, EC-Web.

[106]  Hsinchun Chen,et al.  Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering , 2004, TOIS.

[107]  Tao Luo,et al.  Discovery and Evaluation of Aggregate Usage Profiles for Web Personalization , 2004, Data Mining and Knowledge Discovery.

[108]  John Riedl,et al.  E-Commerce Recommendation Applications , 2004, Data Mining and Knowledge Discovery.

[109]  Gediminas Adomavicius,et al.  Expert-Driven Validation of Rule-Based User Models in Personalization Applications , 2004, Data Mining and Knowledge Discovery.

[110]  Kenneth Y. Goldberg,et al.  Eigentaste: A Constant Time Collaborative Filtering Algorithm , 2001, Information Retrieval.

[111]  David A. Cohn,et al.  Improving generalization with active learning , 1994, Machine Learning.

[112]  Michael J. Pazzani,et al.  A Framework for Collaborative, Content-Based and Demographic Filtering , 1999, Artificial Intelligence Review.

[113]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[114]  Gediminas Adomavicius,et al.  Incorporating contextual information in recommender systems using a multidimensional approach , 2005, TOIS.