Homology stability for classical regular semisimple varieties

[1]  Ian Grojnowski REPRESENTATION THEORY AND COMPLEX GEOMETRY By N EIL C HRISS and V ICTOR G INZBURG : 495 pp., SFr.108.00, ISBN 0 8176 3792 3 (Birkhäuser, 1997). , 1999 .

[2]  G. Lehrer The Cohomology of the Regular Semisimple Variety , 1998 .

[3]  E. Getzler,et al.  Homotopy algebra and iterated integrals for double loop spaces , 1994, hep-th/9403055.

[4]  G. Lehrer,et al.  Rational tori, semisimple orbits and the topology of hyperplane complements , 1992 .

[5]  G. Lehrer,et al.  On flag varieties, hyperplane complements and Springer representations of Weyl groups , 1990, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[6]  G. Lusztig Intersection cohomology complexes on a reductive group , 1984 .

[7]  Graeme Segal,et al.  The topology of spaces of rational functions , 1979 .

[8]  F. Cohen,et al.  The Homology of Iterated Loop Spaces , 1976 .

[9]  T. A. Springer Trigonometric sums, green functions of finite groups and representations of Weyl groups , 1976 .

[10]  G. Segal,et al.  Homology fibrations and the “group-completion” theorem , 1976 .

[11]  Graeme Segal,et al.  Configuration-spaces and iterated loop-spaces , 1973 .

[12]  C. Wall,et al.  Lie Algebras And Lie Groups , 1967, The Mathematical Gazette.

[13]  John Milnor,et al.  On the Structure of Hopf Algebras , 1965 .

[14]  B. Kostant,et al.  Lie Group Representations on Polynomial Rings , 1963 .

[15]  I. James REDUCED PRODUCT SPACES , 1955 .

[16]  Ioan Mackenzie James,et al.  Handbook of algebraic topology , 1995 .

[17]  V. A. Vasilʹev Complements of Discriminants of Smooth Maps: Topology and Applications , 1992 .

[18]  J. P. May,et al.  The geometry of iterated loop spaces , 1972 .