Omnidirectional absorption in nanostructured metal surfaces

Light absorbers are not 100% efficient, and it is a challenge to absorb light completely for any direction of incidence. Using nanostructured metal surfaces, de Abajo and colleagues show that such omnidirectional absorption is now possible, potentially leading to more efficient solar cells.

[1]  Daniel Maystre,et al.  The total absorption of light by a diffraction grating , 1976 .

[2]  Ross C. McPhedran,et al.  Crossed gratings: A theory and its applications , 1979 .

[3]  Tatiana V. Teperik,et al.  Void plasmons and total absorption of light in nanoporous metallic films , 2005 .

[4]  M. Hutley,et al.  Reduction of Lens Reflexion by the “Moth Eye” Principle , 1973, Nature.

[5]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[6]  Jeremy J. Baumberg,et al.  Localized and delocalized plasmons in metallic nanovoids , 2006 .

[7]  J. Baumberg,et al.  Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons. , 2006, Optics express.

[8]  E. Popov,et al.  Comment on 'Resonant electric field enhancement in the vicinity of a bare metallic grating exposed to s-polarized light by A.A. Maradudin and A. Wirgin'. Anomalous light absorption by lamellar metallic gratings , 1992 .

[9]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[10]  J. R. Sambles,et al.  Double-period zero-order metal gratings as effective selective absorbers , 2000 .

[11]  Jeremy J. Baumberg,et al.  Understanding Plasmons in Nanoscale Voids , 2007 .

[12]  Daniel Maystre,et al.  Brewster incidence for metallic gratings , 1976 .

[13]  Daniel Maystre,et al.  Lamellar metallic grating anomalies. , 1994, Applied optics.

[14]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[15]  O. Stenzel,et al.  High-absorbing gradient multilayer coatings with silver nanoparticles , 2006 .

[16]  M. Green,et al.  Surface plasmon enhanced silicon solar cells , 2007 .

[17]  R. Carminati,et al.  Coherent emission of light by thermal sources , 2002, Nature.

[18]  O. Hunderi,et al.  The optical absorption in partially disordered silver films , 1973 .

[19]  Jean-Luc Pelouard,et al.  Efficient light absorption in metal–semiconductor–metal nanostructures , 2004 .

[20]  Jeremy J. Baumberg,et al.  Preparation of Arrays of Isolated Spherical Cavities by Self‐Assembly of Polystyrene Spheres on Self‐Assembled Pre‐patterned Macroporous Films , 2004 .

[21]  A. G. Borisov,et al.  Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials , 2005 .

[22]  Vassilios Yannopapas,et al.  Heterostructures of photonic crystals: frequency bands and transmission coefficients , 1998 .

[23]  E. M. Lifshitz,et al.  Quantum mechanics: Non-relativistic theory, , 1959 .

[24]  J. Schwinger,et al.  Variational Principles for Scattering Processes. I , 1950 .

[25]  Vassilios Yannopapas,et al.  MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals , 2000 .

[26]  A. Maradudin,et al.  Resonant electric field enhancement in the vicinity of a bare metallic grating exposed to s-polarized light , 1985 .

[27]  Optical properties of photonic crystal slabs with an asymmetrical unit cell , 2004, cond-mat/0403010.

[28]  F. Reif,et al.  Fundamentals of Statistical and Thermal Physics , 1965 .

[29]  Total absorption of an electromagnetic wave by an overdense plasma. , 2005, Physical review letters.