Nanoscale Coulomb blockade memory and logic devices

This paper gives a brief review of our recent work done in the area of nanometre-scale Coulomb blockade (CB) memory and logic devices, that enable us to realize future electron-number scalability by overcoming inherent problems to conventional semiconductor devices. We introduce multiple-tunnel junctions (MTJs), naturally formed in heavily doped semiconductor nanowires, as a key building block for our CB devices. For memory applications, the hybrid MTJ/MOS cell architecture is described, and its high-speed RAM operation is investigated. For logic applications the binary decision diagram logic is discussed as a suitable architecture for low-gain MTJ transistors.

[1]  P. Couturier Japan , 1988, The Lancet.

[2]  R. A. Smith,et al.  Gate controlled Coulomb blockade effects in the conduction of a silicon quantum wire , 1997 .

[3]  H. Ahmed,et al.  Coulomb blockade memory using integrated single-electron transistor/metal-oxide-semiconductor transistor gain cells , 2000 .

[4]  Kazuo Nakazato,et al.  Design and analysis of high-speed random access memory with Coulomb blockade charge confinement , 1999 .

[5]  Hiroshi Mizuta,et al.  Effects of disorder on the blockade voltage of two-dimensional quantum dot arrays , 1998 .

[6]  Kazuo Nakazato,et al.  Single-electron memory , 1993 .

[7]  Kazuo Yano,et al.  Room-temperature single-electron memory , 1994 .

[8]  K. Nakazato,et al.  Analysis of multiphase clocked electron pumps consisting of single-electron transistors , 2001 .

[9]  Kazuo Nakazato,et al.  Operation of logic function in a Coulomb blockade device , 1998 .

[10]  Konstantin K. Likharev,et al.  Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions , 1986 .

[11]  K. Nakazato,et al.  Two-way switching based on turnstile operation , 1998 .

[12]  Stephen Y. Chou,et al.  A room-temperature silicon single-electron metal–oxide–semiconductor memory with nanoscale floating-gate and ultranarrow channel , 1997 .

[13]  H.-O. Muller,et al.  Memory cell simulation on the nanometer scale , 2000 .

[14]  Yoshihito Amemiya,et al.  Single-electron logic device based on the binary decision diagram , 1997 .

[15]  K. Nakazato,et al.  Coulomb blockade in silicon nano-pillars , 1999 .

[16]  Kazuo Nakazato,et al.  A memory cell with single-electron and metal-oxide-semiconductor transistor integration , 1999 .

[17]  M. Ancona Design of computationally useful single-electron digital circuits , 1996 .

[18]  Konstantin K. Likharev,et al.  Single‐electron transistor logic , 1996 .

[19]  K. Likharev Single-electron transistors: Electrostatic analogs of the DC SQUIDS , 1987 .

[20]  John R. Tucker,et al.  Complementary digital logic based on the ``Coulomb blockade'' , 1992 .

[21]  Sandip Tiwari,et al.  A silicon nanocrystals based memory , 1996 .

[22]  Marc Kastner,et al.  Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures , 1993 .

[24]  H. Ahmed,et al.  A high-speed silicon single-electron random access memory , 1999, IEEE Electron Device Letters.