Volume Filling Effect in Modelling Chemotaxis

The oriented movement of biological cells or organisms in response to a chemical gra- dient is called chemotaxis. The most interesting situation related to self-organization phenomenon takes place when the cells detect and response to a chemical which is secreted by themselves. Since pioneering works of Patlak (1953) and Keller and Segel (1970) many particularized mod- els have been proposed to describe the aggregation phase of this process. Most of efforts where concentrated, so far, on mathematical models in which the formation of aggregate is interpreted as finite time blow-up of cell density. In recently proposed models cells are no more treated as point masses and their finite volume is accounted for. Thus, arbitrary high cell densities are precluded in such description and a threshold value for cells density is a priori assumed. Different modeling approaches based on this assumption lead to a class of quasilinear parabolic systems with strong nonlinearities including degenerate or singular diffusion. We give a survey of analytical results on the existence and uniqueness of global-in-time solutions, their convergence to stationary states and on a possibility of reaching the density threshold by a solution. Unsolved problems are pointed as well.

[1]  J. J. L. Velázquez,et al.  Point Dynamics in a Singular Limit of the Keller--Segel Model 1: Motion of the Concentration Regions , 2004, SIAM J. Appl. Math..

[2]  Dariusz Wrzosek,et al.  Global attractor for a chemotaxis model with prevention of overcrowding , 2004 .

[3]  B. Perthame,et al.  Existence of solutions of the hyperbolic Keller-Segel model , 2006, math/0612485.

[4]  Tohru Tsujikawa,et al.  Exponential attractor for a chemotaxis-growth system of equations , 2002 .

[5]  Mostafa Bendahmane,et al.  ON A TWO-SIDEDLY DEGENERATE CHEMOTAXIS MODEL WITH VOLUME-FILLING EFFECT , 2007 .

[6]  José A. Carrillo,et al.  Volume effects in the Keller-Segel model : energy estimates preventing blow-up , 2006 .

[7]  Helen M Byrne,et al.  A new interpretation of the Keller-Segel model based on multiphase modelling , 2004, Journal of mathematical biology.

[8]  H. Gajewski,et al.  On a Reaction - Diffusion System Modelling Chemotaxis , 2000 .

[9]  M. Brenner,et al.  Physical mechanisms for chemotactic pattern formation by bacteria. , 1998, Biophysical journal.

[10]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[11]  Dirk Horstmann,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .

[12]  Tomasz Cieślak The solutions of the quasilinear Keller-Segel system with the volume filling effect do not blow up whenever the Lyapunov functional is bounded from below , 2006 .

[13]  Piotr Biler,et al.  LOCAL AND GLOBAL SOLVABILITY OF SOME PARABOLIC SYSTEMS MODELLING CHEMOTAXIS , 1998 .

[14]  Takashi Suzuki,et al.  Chemotactic collapse in a parabolic system of mathematical biology , 2000 .

[15]  Christian Schmeiser,et al.  The Keller-Segel Model with Logistic Sensitivity Function and Small Diffusivity , 2005, SIAM J. Appl. Math..

[16]  Mark Alber,et al.  Macroscopic dynamics of biological cells interacting via chemotaxis and direct contact. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[18]  Thomas Hillen,et al.  Classical solutions and pattern formation for a volume filling chemotaxis model. , 2007, Chaos.

[19]  Tomasz Cieślak,et al.  Quasilinear non-uniformly parabolic-elliptic system modelling chemotaxis with volume filling effect. Existence and uniqueness of global-in-time solutions , 2007 .

[20]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[21]  Herbert Amann,et al.  Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems , 1993 .

[22]  M. A. Herrero,et al.  Chemotactic collapse for the Keller-Segel model , 1996, Journal of mathematical biology.

[23]  Yanyan Zhang,et al.  Asymptotic behavior of solutions to a quasilinear nonuniform parabolic system modelling chemotaxis , 2010 .

[24]  D. Wrzosek Chemotaxis models with a threshold cell density , 2008 .

[25]  Michael Winkler,et al.  Finite-time blow-up in a quasilinear system of chemotaxis , 2008 .

[26]  K. Painter,et al.  A User's Guide to Pde Models for Chemotaxis , 2022 .

[27]  Thomas Hillen,et al.  Metastability in Chemotaxis Models , 2005 .

[28]  Eduard Feireisl,et al.  On convergence to equilibria for the Keller–Segel chemotaxis model , 2007 .

[29]  Thomas Hillen,et al.  Global Existence for a Parabolic Chemotaxis Model with Prevention of Overcrowding , 2001, Adv. Appl. Math..

[30]  K. Painter,et al.  Volume-filling and quorum-sensing in models for chemosensitive movement , 2002 .

[31]  D. Wrzosek Model of chemotaxis with threshold density and singular diffusion , 2010 .

[32]  D. Aronson The porous medium equation , 1986 .

[33]  P K Maini,et al.  Pattern formation in a generalized chemotactic model , 1998, Bulletin of mathematical biology.

[34]  Mark S. Alber,et al.  Existence of global solutions of a macroscopic model of cellular motion in a chemotactic field , 2009, Appl. Math. Lett..

[35]  Tomasz Cieślak Quasilinear nonuniformly parabolic system modelling chemotaxis , 2007 .

[36]  Michael Winkler,et al.  Does a ‘volume‐filling effect’ always prevent chemotactic collapse? , 2010 .

[37]  H. Amann Dynamic theory of quasilinear parabolic systems , 1989 .

[38]  Yanyan Zhang,et al.  On convergence to equilibria for a chemotaxis model with volume-filling effect , 2009, Asymptot. Anal..

[39]  Marco Di Francesco,et al.  Fully parabolic Keller–Segel model for chemotaxis with prevention of overcrowding , 2008 .

[40]  R. Schaaf Stationary solutions of chemotaxis systems , 1985 .

[41]  C. Patlak Random walk with persistence and external bias , 1953 .

[42]  E. Boschi Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .

[43]  Yung-Sze Choi,et al.  Prevention of blow-up by fast diffusion in chemotaxis , 2010 .

[44]  J. Rodrigues,et al.  A class of kinetic models for chemotaxis with threshold to prevent overcrowding. , 2006 .

[45]  Philippe Laurençot,et al.  A Chemotaxis Model with Threshold Density and Degenerate Diffusion , 2005 .

[46]  J. J. L. Velázquez,et al.  Point Dynamics in a Singular Limit of the Keller--Segel Model 2: Formation of the Concentration Regions , 2004, SIAM J. Appl. Math..

[47]  Mostafa Bendahmane,et al.  A reaction–diffusion system modeling predator–prey with prey-taxis , 2008 .

[48]  L. Preziosi,et al.  On the stability of homogeneous solutions to some aggregation models , 2003 .

[49]  Dariusz Wrzosek,et al.  Long-time behaviour of solutions to a chemotaxis model with volume-filling effect , 2006, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[50]  Richard E. Mortensen,et al.  Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Roger Temam) , 1991, SIAM Rev..

[51]  M. A. Herrero,et al.  A blow-up mechanism for a chemotaxis model , 1997 .

[52]  Dirk Horstmann,et al.  Lyapunov functions and $L^{p}$-estimates for a class of reaction-diffusion systems , 2001 .