Volume Filling Effect in Modelling Chemotaxis
暂无分享,去创建一个
[1] J. J. L. Velázquez,et al. Point Dynamics in a Singular Limit of the Keller--Segel Model 1: Motion of the Concentration Regions , 2004, SIAM J. Appl. Math..
[2] Dariusz Wrzosek,et al. Global attractor for a chemotaxis model with prevention of overcrowding , 2004 .
[3] B. Perthame,et al. Existence of solutions of the hyperbolic Keller-Segel model , 2006, math/0612485.
[4] Tohru Tsujikawa,et al. Exponential attractor for a chemotaxis-growth system of equations , 2002 .
[5] Mostafa Bendahmane,et al. ON A TWO-SIDEDLY DEGENERATE CHEMOTAXIS MODEL WITH VOLUME-FILLING EFFECT , 2007 .
[6] José A. Carrillo,et al. Volume effects in the Keller-Segel model : energy estimates preventing blow-up , 2006 .
[7] Helen M Byrne,et al. A new interpretation of the Keller-Segel model based on multiphase modelling , 2004, Journal of mathematical biology.
[8] H. Gajewski,et al. On a Reaction - Diffusion System Modelling Chemotaxis , 2000 .
[9] M. Brenner,et al. Physical mechanisms for chemotactic pattern formation by bacteria. , 1998, Biophysical journal.
[10] L. Segel,et al. Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.
[11] Dirk Horstmann,et al. F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .
[12] Tomasz Cieślak. The solutions of the quasilinear Keller-Segel system with the volume filling effect do not blow up whenever the Lyapunov functional is bounded from below , 2006 .
[13] Piotr Biler,et al. LOCAL AND GLOBAL SOLVABILITY OF SOME PARABOLIC SYSTEMS MODELLING CHEMOTAXIS , 1998 .
[14] Takashi Suzuki,et al. Chemotactic collapse in a parabolic system of mathematical biology , 2000 .
[15] Christian Schmeiser,et al. The Keller-Segel Model with Logistic Sensitivity Function and Small Diffusivity , 2005, SIAM J. Appl. Math..
[16] Mark Alber,et al. Macroscopic dynamics of biological cells interacting via chemotaxis and direct contact. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.
[17] Daniel B. Henry. Geometric Theory of Semilinear Parabolic Equations , 1989 .
[18] Thomas Hillen,et al. Classical solutions and pattern formation for a volume filling chemotaxis model. , 2007, Chaos.
[19] Tomasz Cieślak,et al. Quasilinear non-uniformly parabolic-elliptic system modelling chemotaxis with volume filling effect. Existence and uniqueness of global-in-time solutions , 2007 .
[20] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .
[21] Herbert Amann,et al. Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems , 1993 .
[22] M. A. Herrero,et al. Chemotactic collapse for the Keller-Segel model , 1996, Journal of mathematical biology.
[23] Yanyan Zhang,et al. Asymptotic behavior of solutions to a quasilinear nonuniform parabolic system modelling chemotaxis , 2010 .
[24] D. Wrzosek. Chemotaxis models with a threshold cell density , 2008 .
[25] Michael Winkler,et al. Finite-time blow-up in a quasilinear system of chemotaxis , 2008 .
[26] K. Painter,et al. A User's Guide to Pde Models for Chemotaxis , 2022 .
[27] Thomas Hillen,et al. Metastability in Chemotaxis Models , 2005 .
[28] Eduard Feireisl,et al. On convergence to equilibria for the Keller–Segel chemotaxis model , 2007 .
[29] Thomas Hillen,et al. Global Existence for a Parabolic Chemotaxis Model with Prevention of Overcrowding , 2001, Adv. Appl. Math..
[30] K. Painter,et al. Volume-filling and quorum-sensing in models for chemosensitive movement , 2002 .
[31] D. Wrzosek. Model of chemotaxis with threshold density and singular diffusion , 2010 .
[32] D. Aronson. The porous medium equation , 1986 .
[33] P K Maini,et al. Pattern formation in a generalized chemotactic model , 1998, Bulletin of mathematical biology.
[34] Mark S. Alber,et al. Existence of global solutions of a macroscopic model of cellular motion in a chemotactic field , 2009, Appl. Math. Lett..
[35] Tomasz Cieślak. Quasilinear nonuniformly parabolic system modelling chemotaxis , 2007 .
[36] Michael Winkler,et al. Does a ‘volume‐filling effect’ always prevent chemotactic collapse? , 2010 .
[37] H. Amann. Dynamic theory of quasilinear parabolic systems , 1989 .
[38] Yanyan Zhang,et al. On convergence to equilibria for a chemotaxis model with volume-filling effect , 2009, Asymptot. Anal..
[39] Marco Di Francesco,et al. Fully parabolic Keller–Segel model for chemotaxis with prevention of overcrowding , 2008 .
[40] R. Schaaf. Stationary solutions of chemotaxis systems , 1985 .
[41] C. Patlak. Random walk with persistence and external bias , 1953 .
[42] E. Boschi. Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .
[43] Yung-Sze Choi,et al. Prevention of blow-up by fast diffusion in chemotaxis , 2010 .
[44] J. Rodrigues,et al. A class of kinetic models for chemotaxis with threshold to prevent overcrowding. , 2006 .
[45] Philippe Laurençot,et al. A Chemotaxis Model with Threshold Density and Degenerate Diffusion , 2005 .
[46] J. J. L. Velázquez,et al. Point Dynamics in a Singular Limit of the Keller--Segel Model 2: Formation of the Concentration Regions , 2004, SIAM J. Appl. Math..
[47] Mostafa Bendahmane,et al. A reaction–diffusion system modeling predator–prey with prey-taxis , 2008 .
[48] L. Preziosi,et al. On the stability of homogeneous solutions to some aggregation models , 2003 .
[49] Dariusz Wrzosek,et al. Long-time behaviour of solutions to a chemotaxis model with volume-filling effect , 2006, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[50] Richard E. Mortensen,et al. Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Roger Temam) , 1991, SIAM Rev..
[51] M. A. Herrero,et al. A blow-up mechanism for a chemotaxis model , 1997 .
[52] Dirk Horstmann,et al. Lyapunov functions and $L^{p}$-estimates for a class of reaction-diffusion systems , 2001 .