A “quasi‐flexible” automatic docking processing for studying stereoselective recognition mechanisms. Part I. Protocol validation

The main purpose of this work is the development and validation of a general scheme based on a systematic and automatic “quasi‐flexible” docking approach for studying stereoselective recognition mechanisms. To achieve our goals we explore the conformational and configurational space for small‐ or medium‐size flexible molecules in a systematic way, seeking a method that is both reasonably accurate and relatively fast from the computational point of view. In particular, we have developed a general computational protocol for the global molecular interaction evaluation (“Glob‐MolInE”) to efficiently explore the orientational and conformational space of flexible selectors and selectands used in modern chiral high‐performance liquid chromatography (HPLC); the enantioselective binding of the selector (S)‐N‐(3,5‐dinitrobenzoyl)‐leucine‐ n‐propylamide (S)‐1 towards the selectand N‐(2‐naphthyl)‐alanine methyl ester 2 has been studied; the global minimum obtained for the homochiral associate [S(1)/S(2)] (Pop. >99%) is very close (RMS≃0.20) to the crystallographically determined structure. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 515–530, 2000

[1]  T. Darden,et al.  Enantioselective binding of 2,2,2-trifluoro-1-(9-anthryl)ethanol on a chiral stationary phase: a theoretical study , 1987 .

[2]  W. H. Pirkle,et al.  X-Ray crystallographic support of a chiral recognition model , 1989 .

[3]  K. Lipkowitz,et al.  Computational analysis of chiral recognition in pirkle phases , 1990 .

[4]  F. Leusen,et al.  Computational chemistry applied to the design of chiral stationary phases for enantiomeric separation , 1989 .

[5]  R. W. Souter Chromatographic Separations of Stereoisomers , 1985 .

[6]  K. Lipkowitz,et al.  Theoretical studies in molecular recognition: Rebek's cleft , 1989 .

[7]  C. Welch Evolution of chiral stationary phase design in the Pirkle laboratories , 1994 .

[8]  K. Lipkowitz,et al.  Enantioselective binding of tryptophan by .alpha.-cyclodextrin , 1992 .

[9]  G. Chang,et al.  Macromodel—an integrated software system for modeling organic and bioorganic molecules using molecular mechanics , 1990 .

[10]  S. Ahuja Chiral separations by liquid chromatography , 1991 .

[11]  T. Pochapsky,et al.  Intermolecular proton[proton] nuclear Overhauser effects in diastereomeric complexes: support for a chromatographically derived chiral recognition model , 1986 .

[12]  K. Maher,et al.  Chiral separations by high-performance liquid chromatography , 1992 .

[13]  P. Murray,et al.  Chiral stationary phase design: Use of intercalative effects to enhance enantioselectivity , 1993 .

[14]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[15]  M. Sabio,et al.  Interactions between eight centers are required for chiral recognition , 1989 .

[16]  K. Lipkowitz,et al.  Theoretical studies in molecular recognition: Enantioselectivity in chiral chromatography , 1989 .

[17]  I. Wilson,et al.  Recent Advances in Chiral Separations , 1991, Chromatographic Society Symposium Series.

[18]  G. Subramanian A practical approach to chiral separations by liquid chromatography , 1994 .

[19]  M. Sabio,et al.  Computational chemical studies of chiral stationary phase models , 1989 .

[20]  Kenny B. Lipkowitz,et al.  Protocol for determining enantioselective binding of chiral analytes on chiral chromatographic surfaces , 1988 .

[21]  Joep Aerts An improved molecular modeling method for the prediction of enantioselectivity , 1995, J. Comput. Chem..

[22]  M. Sabio,et al.  A molecular dynamics investigation of chiral discrimination complexes as chiral stationary‐phase models: Methyl N‐(2‐naphthyl)alaninate with N‐(3,5‐dinitrobenzoyl)leucine n‐propylamide , 1991 .

[23]  M. Sabio,et al.  Computational chemical studies of chiral stationary‐phase models: The nature of the Pi interaction in complexes of methyl N‐(2‐naphthyl) alaninate with N‐(3,5‐dinitrobenzoyl)leucine n‐propylamide , 1989 .

[24]  W. H. Pirkle,et al.  Reciprocity in Chiral Recognition : Comparison of several chiral stationary phases , 1987 .

[25]  William H. Pirkle,et al.  Considerations of chiral recognition relevant to the liquid chromatography separation of enantiomers , 1989 .

[26]  L. Rogers,et al.  Molecular modelling of structural changes which affect chromatographic selectivity in chiral separations. , 1989, Talanta.

[27]  Daniel A. Gschwend,et al.  Orientational sampling and rigid-body minimization in molecular docking revisited: On-the-fly optimization and degeneracy removal , 1996, J. Comput. Aided Mol. Des..

[28]  K. Bartle,et al.  A computational study of the chromatographic separation of racemic mixtures , 1995 .

[29]  William H. Pirkle,et al.  Chiral molecular recognition in small bimolecular systems: a spectroscopic investigation into the nature of diastereomeric complexes , 1987 .

[30]  Kenny B. Lipkowitz,et al.  Dynamic molecular surface areas , 1989 .

[31]  U. Norinder,et al.  The Use of Computer Aided Chemistry to Predict Chiral Separation in Liquid Chromatography , 1987 .

[32]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[33]  J. Finn,et al.  Broad spectrum resolution of optical isomers using chiral high-performance liquid chromatographic bonded phases , 1980 .

[34]  T. Darden,et al.  Column design. 3. Theoretical studies of a chiral stationary phase used in column chromatography , 1986, Analytical chemistry.

[35]  J. Scott Dixon,et al.  Flexible ligand docking using a genetic algorithm , 1995, J. Comput. Aided Mol. Des..

[36]  D. K. Friesen,et al.  A combinatorial algorithm for calculating ligand binding , 1984 .

[37]  C. Welch,et al.  Design, synthesis, and evaluation of an improved enantioselective naproxen selector , 1992 .

[38]  S. Topiol A general criterion for molecular recognition: implications for chiral interactions. , 1989, Chirality.

[39]  W. B. Caldwell,et al.  Computational studies of the interactions of chiral molecules: complexes of methyl N-(2-naphthyl)alaninate with N-(3,5-dinitrobenzoyl)leucine n-propylamide as a model for chiral stationary-phase interactions , 1988 .