Pt-Pd bimetallic catalysts: Structural and thermal stabilities of core-shell and alloyed nanoparticles

National Natural Science Foundation of China [21021002, 61036003]; Natural Science Foundation of Fujian Province of China [2011J05011]; Fundamental Research Funds for the Central Universities [2012121010]

[1]  J. Hong,et al.  Synthesis of AuPt heteronanostructures with enhanced electrocatalytic activity toward oxygen reduction. , 2010, Angewandte Chemie.

[2]  F. Czerwinski,et al.  The melting behaviour of extruded Mg–8%Al–2%Zn alloy , 2003 .

[3]  U. Pal,et al.  Thermodynamic Stability and Melting Mechanism of Bimetallic Au-Pt Nanoparticles , 2008 .

[4]  Y. Yamauchi,et al.  Controlled aqueous solution synthesis of platinum-palladium alloy nanodendrites with various compositions using amphiphilic triblock copolymers. , 2010, Chemistry, an Asian journal.

[5]  William A. Goddard,et al.  Melting and crystallization in Ni nanoclusters: The mesoscale regime , 2001 .

[6]  Denis J. Evans,et al.  The Nose–Hoover thermostat , 1985 .

[7]  Yusuke Yamauchi,et al.  Direct synthesis of spatially-controlled Pt-on-Pd bimetallic nanodendrites with superior electrocatalytic activity. , 2011, Journal of the American Chemical Society.

[8]  C. Chen,et al.  Comparative study on size dependence of melting temperatures of pure metal and alloy nanoparticles , 2011 .

[9]  Nguyen Viet Long,et al.  Shape-controlled synthesis of Pt–Pd core–shell nanoparticles exhibiting polyhedral morphologies by modified polyol method , 2011 .

[10]  A. Bell The Impact of Nanoscience on Heterogeneous Catalysis , 2003, Science.

[11]  Younan Xia,et al.  Metal nanocrystals with highly branched morphologies. , 2011, Angewandte Chemie.

[12]  W. Goddard,et al.  Strain Rate Induced Amorphization in Metallic Nanowires , 1999 .

[13]  Shigang Sun,et al.  Structure and stability of platinum nanocrystals: from low-index to high-index facets , 2011 .

[14]  M. Karplus,et al.  The distance fluctuation criterion for melting: Comparison of square-well and Morse potential models for clusters and homopolymers , 2002 .

[15]  W. Goddard,et al.  Calculation of Mechanical, Thermodynamic and Transport Properties of Metallic Glass Formers , 1998 .

[16]  M. El-Sayed,et al.  Some interesting properties of metals confined in time and nanometer space of different shapes. , 2001, Accounts of chemical research.

[17]  Shigang Sun,et al.  Direct electrodeposition of tetrahexahedral Pd nanocrystals with high-index facets and high catalytic activity for ethanol electrooxidation. , 2010, Journal of the American Chemical Society.

[18]  W. C. Swope,et al.  A computer simulation method for the calculation of equilibrium constants for the formation of physi , 1981 .

[19]  Shigang Sun,et al.  Thermal stability of platinum nanowires: a comparison study between single-crystalline and twinned structures , 2011 .

[20]  Wolf,et al.  Effect of interatomic potential on simulated grain-boundary and bulk diffusion: A molecular-dynamics study. , 1990, Physical review. B, Condensed matter.

[21]  J. Ying,et al.  Diffusion of gold from the inner core to the surface of Ag(2)S nanocrystals. , 2010, Journal of the American Chemical Society.

[22]  Y. Yamauchi,et al.  Synthesis of Bimetallic Au@Pt Nanoparticles with Au Core and Nanostructured Pt Shell toward Highly Active Electrocatalysts , 2010 .

[23]  J. Zuo,et al.  Structural characterization of Pt-Pd and Pd-Pt core-shell nanoclusters at atomic resolution. , 2009, Journal of the American Chemical Society.

[24]  Yong Ding,et al.  Atomic structure of Au-Pd bimetallic alloyed nanoparticles. , 2010, Journal of the American Chemical Society.

[25]  G. Guisbiers,et al.  Size-dependent catalytic and melting properties of platinum-palladium nanoparticles , 2011, Nanoscale research letters.

[26]  Feng Tao,et al.  Reaction-Driven Restructuring of Rh-Pd and Pt-Pd Core-Shell Nanoparticles , 2008, Science.

[27]  B. Eichhorn,et al.  Rh-Pt bimetallic catalysts: synthesis, characterization, and catalysis of core-shell, alloy, and monometallic nanoparticles. , 2008, Journal of the American Chemical Society.

[28]  H. Löwen Melting, freezing and colloidal suspensions , 1994 .

[29]  Jin Luo,et al.  Nanoscale Alloying, Phase-Segregation, and Core−Shell Evolution of Gold−Platinum Nanoparticles and Their Electrocatalytic Effect on Oxygen Reduction Reaction , 2010 .

[30]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[31]  Shigang Sun,et al.  Orientation-Dependent Structural Transition and Melting of Au Nanowires , 2009 .

[32]  Nguyen Viet Long,et al.  A comparative study of Pt and Pt–Pd core–shell nanocatalysts , 2011 .

[33]  Manos Mavrikakis,et al.  Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. , 2008, Nature materials.

[34]  Stanislaus S. Wong,et al.  Enhanced electrocatalytic performance of processed, ultrathin, supported Pd-Pt core-shell nanowire catalysts for the oxygen reduction reaction. , 2011, Journal of the American Chemical Society.

[35]  Younan Xia,et al.  Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction , 2009, Science.

[36]  Zhong Lin Wang,et al.  Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity , 2007, Science.

[37]  Y. Shibuta,et al.  Melting and nucleation of iron nanoparticles: A molecular dynamics study , 2007 .

[38]  S. Sankaranarayanan,et al.  Molecular dynamics simulation study of the melting of Pd-Pt nanoclusters , 2005 .

[39]  Qiang Wang,et al.  High-index faceted platinum nanocrystals supported on carbon black as highly efficient catalysts for ethanol electrooxidation. , 2010, Angewandte Chemie.