The large-scale geometry of locally compact solvable groups
暂无分享,去创建一个
[1] Isoperimetric profile and random walks on locally compact solvable groups , 2007, 0706.4257.
[2] E. Leuzinger,et al. Isoperimetric inequalities for lattices in semisimple lie groups of rank 2 , 1996 .
[4] N. Varopoulos. Random walks on soluble groups , 1983 .
[5] Graham A. Niblo,et al. Asymptotic invariants of infinite groups , 1993 .
[6] Iosif Polterovich,et al. Explicit constructions of universal R-trees and asymptotic geometry of hyperbolic spaces , 1999 .
[7] On Isoperimetric Profiles of Finitely Generated Groups , 2003 .
[8] E. Heintze. On homogeneous manifolds of negative curvature , 1974 .
[9] Laurent Saloff-Coste,et al. ON RANDOM WALKS ON WREATH PRODUCTS , 2002 .
[10] Alexander Lubotzky,et al. Ramanujan complexes of typeÃd , 2005 .
[11] S. M. Gersten,et al. Isoperimetric inequalities for nilpotent groups , 2002 .
[12] A. Erschler. Isoperimetry for wreath products of Markov chains and multiplicity of selfintersections of random walks , 2006 .
[13] G. Pólya. Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz , 1921 .
[14] E. Leuzinger,et al. On quadratic Dehn functions , 2004 .
[15] Benson Farb,et al. On the asymptotic geometry of abelian-by-cyclic groups , 2000, math/0005181.
[16] Laurent Saloff-Coste,et al. GAUSSIAN ESTIMATES FOR MARKOV CHAINS AND RANDOM WALKS ON GROUPS , 1993 .
[17] C. Pittet,et al. On the stability of the behavior of random walks on groups , 2000 .
[18] Noel Brady,et al. The Geometry of the Word Problem for Finitely Generated Groups , 2007 .
[19] Filling in solvable groups and in lattices in semisimple groups , 2001 .
[20] Alain Valette,et al. Kazhdan's Property (T): List of symbols , 2008 .
[21] N. Varopoulos,et al. Long range estimates for markov chains , 1985 .
[22] Thierry Coulhon,et al. A geometric approach to on-diagonal heat kernel lower bounds on groups , 2001 .
[23] A Lower Estimate for Central Probabilities on Polycyclic Groups , 1992, Canadian Journal of Mathematics.
[24] G. Arzhantseva,et al. Solvable groups with polynomial Dehn functions , 2002 .
[25] B. Wehrfritz. Infinite linear groups : an account of the group-theoretic properties of infinite groups of matrices , 1973 .
[26] Mark Sapir,et al. Asymptotic invariants, complexity of groups and related problems , 2010, 1012.1325.
[27] M. Raghunathan. Discrete subgroups of Lie groups , 1972 .
[28] S. Wenger. Nilpotent groups without exactly polynomial Dehn function , 2010, 1004.2907.
[29] An isoperimetric inequality for the Heisenberg groups , 1998 .
[30] Alain Valette,et al. Kazhdan's Property (T): KAZHDAN'S PROPERTY (T) , 2008 .
[31] Richard J. Lipton,et al. Word Problems Solvable in Logspace , 1977, JACM.
[32] S. M. Gersten,et al. Geometric Group Theory: Isoperimetric and Isodiametric Functions of Finite Presentations , 1993 .
[33] Gilbert Baumslag. A finitely presented metabelian group with a free abelian derived group of infinite rank , 1972 .
[34] P. Hall,et al. The Frattini Subgroups of Finitely Generated Groups , 1961 .
[35] Romain Tessera,et al. Large scale Sobolev inequalities on metric measure spaces and applications , 2007, math/0702751.
[36] Cornelia Drutu. Quasi-Isometry Invariants and Asymptotic Cones , 2002, Int. J. Algebra Comput..
[37] Yves Cornulier. Asymptotic cones of Lie groups and cone equivalences , 2009, 0907.2546.
[38] REMPLISSAGE DANS DES RESEAUX DE Q-RANG 1 ET DANS DES GROUPES RESOLUBLES , 1998 .
[39] J. M. Alonso. INEGALITES ISOPERIMETRIQUES ET QUASI-ISOMETRIES , 1990 .
[40] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[41] Benson Farb,et al. Quasi-isometric rigidity for the solvable Baumslag-Solitar groups, II , 1998, math/9809010.
[42] E. Rips,et al. Isoperimetric functions of groups and computational complexity of the word problem , 1998 .
[43] A. Eskin,et al. Coarse differentiation of quasi-isometries II: Rigidity for Sol and Lamplighter groups , 2007, 0706.0940.
[44] C. Pittet,et al. Isoperimetric Inequalities for Homogeneous Nilpotent Groups , 1995 .
[45] A. Yu. Ol'shanskii. Hyperbolicity of Groups with Subquadratic isoperimetric inequality , 1991, Int. J. Algebra Comput..
[46] P. Pansu. Croissance des boules et des géodésiques fermées dans les nilvariétés , 1983, Ergodic Theory and Dynamical Systems.
[47] J. C. C. McKinsey,et al. The decision problem for some classes of sentences without quantifiers , 1943, Journal of Symbolic Logic.
[48] Brian H. Bowditch,et al. A short proof that a subquadratic isoperimetric inequality implies a linear one. , 1995 .
[49] Roman Sauer,et al. Spectral distribution and L2-isoperimetric profile of Laplace operators on groups , 2009, 0901.0271.
[50] Vadim A. Kaimanovich,et al. Random Walks on Discrete Groups: Boundary and Entropy , 1983 .
[51] Isoperimetric Inequalities in Nilpotent Groups , 1997 .
[52] Roman Sauer. Homological Invariants and Quasi-Isometry , 2003, math/0312129.
[53] Laurent Saloff-Coste,et al. Variétés riemanniennes isométriques à l'infini , 1995 .
[54] E. Leuzinger. On polyhedral retracts and compactifications of locally symmetric spaces , 2004 .
[55] Jean-Camille Birget,et al. Isoperimetric and isodiametric functions of groups , 1998 .
[56] Yves Cornulier. Dimension of asymptotic cones of Lie groups , 2007, math/0703192.
[57] John Roe,et al. Lectures on coarse geometry , 2003 .
[58] Stephan Waack. On the parallel complexity of linear groups , 1991, RAIRO Theor. Informatics Appl..
[59] R. Tessera,et al. Dehn function and asymptotic cones of Abels’ group , 2012, 1203.4696.
[60] M. Gromov. Carnot-Carathéodory spaces seen from within , 1996 .
[61] H. Abels. Finite Presentability of S-Arithmetic Groups: Compact Presentability of Solvable Groups , 1987 .
[62] Sanjeev Arora,et al. Computational Complexity: A Modern Approach , 2009 .
[63] L. Saloff-Coste,et al. Analysis on Riemannian co-compact covers , 2004 .
[64] Yehuda Shalom,et al. Harmonic analysis, cohomology, and the large-scale geometry of amenable groups , 2004 .
[65] The Dehn function of SL(n;Z) , 2009, 0912.2697.
[66] D. Montgomery,et al. Topological Transformation Groups , 1956 .
[67] N. Varopoulos. Isoperimetric inequalities and Markov chains , 1985 .
[68] Filling in solvable groups and in lattices in semisimple groups , 2001, math/0110107.
[69] On heat kernels on Lie groups , 1992 .
[70] A. Guichardet. Cohomologie des groupes topologiques et des algèbres de Lie , 1980 .
[71] Alexander Lubotzky,et al. Explicit constructions of Ramanujan complexes of type , 2005, Eur. J. Comb..
[72] P. Kropholler. On Finitely Generated Soluble Groups With No Large Wreath Product Sections , 1984 .
[73] B. A. F. Wehrfritz,et al. Infinite linear groups , 1973 .
[74] Thierry Coulhon,et al. Manifolds and graphs with slow heat kernel decay , 2001 .
[75] L. Saloff-Coste,et al. Random walks on finite rank solvable groups , 2003 .
[76] André Weil,et al. Basic number theory , 1967 .
[77] David Fisher,et al. Coarse differentiation of quasi-isometries I: Spaces not quasi-isometric to Cayley graphs , 2006, math/0607207.
[78] Lacunary hyperbolic groups , 2007, math/0701365.
[79] O G Harlampovič,et al. A FINITELY PRESENTED SOLVABLE GROUP WITH UNSOLVABLE WORD PROBLEM , 1982 .
[80] S. Hermiller,et al. Isoperimetric Inequalities for Soluble Groups , 2001 .
[81] Harry Kesten,et al. Full Banach Mean Values on Countable groups. , 1959 .
[82] M. Kneser. Erzeugende und Relationen verallgemeinerter Einheitengruppen. , 1964 .
[83] David Fisher,et al. Quasi-isometries and rigidity of solvable groups , 2005 .
[84] S. M. Gersten,et al. Dehn functions and l1-norms of nite presentations , 1989 .
[85] R. Bieri,et al. Valuations and Finitely Presented Metabelian Groups , 1980 .
[86] H. Abels. Homological Group Theory: An example of a finite presented solvable group , 1979 .
[87] P. Papasoglu. On the asymptotic cone of groups satisfying a quadratic isoperimetric inequality , 1996 .
[88] R. Goodman. Nilpotent Lie Groups , 1976 .
[89] Y. Guivarc’h. Croissance polynomiale et périodes des fonctions harmoniques , 1973 .
[90] M. Gromov. Groups of polynomial growth and expanding maps , 1981 .
[91] P. Delorme. 1-cohomologie des représentations unitaires des groupes de Lie semi-simples et résolubles. Produits tensoriels continus de représentations , 1977 .
[92] The quasi-isometry classification of lattices in semisimple Lie groups , 1997 .
[93] Fundamental groups of asymptotic cones , 2004, math/0404111.
[94] Cornelia Drutu,et al. Tree-graded spaces and asymptotic cones of groups , 2004 .
[95] Charles F. Miller,et al. Isoperimetric inequalities and the homology of groups , 1993 .
[96] David B. A. Epstein,et al. Word processing in groups , 1992 .
[97] R. Tessera,et al. METABELIAN GROUPS WITH QUADRATIC DEHN FUNCTION AND BAUMSLAG–SOLITAR GROUPS , 2010, 1003.0148.
[98] D. Cooper. A Rigidity Theorem for the Solvable Baumslag-solitar Groups , 1996 .
[99] S. Gersten. Quasi-isometry invariance of cohomological dimension , 1993 .