A computational study on the relative reactivity of reductively activated 1,4-benzoquinone and its isoelectronic analogs

SummaryThe redox capacities of p-benzoquinone (I) and its analogs p-benzoquinone imine (VI) and p-benzoquinone diimine (XI) as the simplest model systems for the biochemically important quinone site of the pharmacophores of the anthracyclines has been investigated by AM1 semi-empirical and ab initio methods. The reductive activation of the parent (Q) model systems to their various redox states (quinone radical anion (% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyuamaaCa% aaleqabaGabeylayaazaaaaaaa!37BD!\[{\text{Q}}^{{\text{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\cdot}$}}{ - } }}} \]), semiquinone (QH⋅), semiquinone anion (QH-) and hydroquinone (QH2)), the internal geometrical reorganization and the redox capacities of the redox states have been examined by using energy-partitioning analysis, reaction enthalpies/energies for electron and proton attachments, adiabatic ionization potentials (IPad) and electron affinities (EAad), adiabatic electronegativities (Xad), dipole moments, electrostatic potentials and spin-density surfaces. EAad data and results of energy-partitioning analysis suggest that the one-electron Q to % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyuamaaCa% aaleqabaGabeylayaazaaaaaaa!37BD!\[{\text{Q}}^{{\text{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\cdot}$}}{ - } }}} \] reducibility of VI is diminished when compared to that of I. The data also predict that reduction to QH⋅, QH- and QH2 is more favorable in VI (cf. I). Deprotonation enthalpy/energy calculations predict that the oxidizability of the reduced forms of VI is diminished when compared to I. Overall, the calculations suggest that the redox cycling of VI should be diminished if deprotonation is the first step of the autoxidation of the reduced forms. The results suggest that the electron affinity of Q and deprotonation of the reduced forms (e.g., QH⋅) may play important roles in the redox cycling of the anthracyclines. It is further suggested that these same factors are probably responsible for the reduced toxicity of 5-iminodaunomycin, which consists of VI as part of its pharmacophore. A comparison of the AM1 results with ab initio results suggests that the AM1 method is capable of predicting trends in redox capacity, nucleophilicity, electrophilicity and electron affinity in the systems investigated.

[1]  S K Carter,et al.  Adriamycin. A new anticancer drug with significant clinical activity. , 1974, Annals of internal medicine.

[2]  T. Mukherjee,et al.  Free radical formation from anthracycline antitumour agents and model systems--I. Model naphthoquinones and anthraquinones. , 1984, Biochemical pharmacology.

[3]  R. Parr,et al.  Absolute hardness: companion parameter to absolute electronegativity , 1983 .

[4]  S. Kahn,et al.  Interplay of substituent conformation and electron affinity in quinone models of quinone reductases , 1990 .

[5]  B. Halliwell,et al.  Free radicals in biology and medicine , 1985 .

[6]  Donald G. Truhlar,et al.  Correlation and solvation effects on heterocyclic equilibria in aqueous solution , 1993 .

[7]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[8]  Wallace S. Brey,et al.  Physical Chemistry and Its Biological Applications , 1978 .

[9]  A semiempirical computational study of electron transfer reactivity of one‐ vs. two‐ring model systems for anthracycline pharmacophores. I. A rationale for mode of action , 1996 .

[10]  Warren J. Hehre,et al.  Practical strategies for electronic structure calculations , 1995 .

[11]  R. Pearson,et al.  Absolute electronegativity and hardness correlated with molecular orbital theory. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Z. Maksić,et al.  Geometric and electronic structure of vitamin C radicals. A semiempirical study , 1986 .

[13]  V. Favaudon On the mechanism of reductive activation in the mode of action of some anticancer drugs. , 1982, Biochimie.

[14]  Ralph G. Pearson,et al.  Recent advances in the concept of hard and soft acids and bases , 1987 .

[15]  F. Arcamone Doxorubicin : anticancer antibiotics , 1981 .

[16]  E. Acton,et al.  Further studies on the generation of reactive oxygen species from activated anthracyclines and the relationship to cytotoxic action and cardiotoxic effects. , 1982, Biochemical pharmacology.

[17]  E. Acton,et al.  Diminished superoxide anion generation by reduced 5-iminodaunorubicin relative to daunorubicin and the relationship to cardiotoxicity of the anthracycline antitumor agents. , 1979, Biochemical pharmacology.

[18]  H. Kollmar,et al.  Energy partitioning with the CNDO method , 1970 .

[19]  N. Bachur,et al.  Adriamycin metabolism in man. Evidence from urinary metabolites. , 1976, Drug metabolism and disposition: the biological fate of chemicals.

[20]  Kenichi Fukui,et al.  Recognition of stereochemical paths by orbital interaction , 1971 .

[21]  P. Bischof Unrestricted open-shell calculations by MINDO/3. Geometries and electronic structure of radicals , 1976 .

[22]  C. Monneret,et al.  Pharmacological and physicochemical properties of a new anthracycline with potent antileukemic activity. , 1991, Leukemia research.

[23]  R. Olson,et al.  The major metabolite of doxorubicin is a potent inhibitor of membrane-associated ion pumps. A correlative study of cardiac muscle with isolated membrane fractions. , 1987, The Journal of biological chemistry.

[24]  J. Lown,,et al.  Newer approaches to the study of the mechanisms of action of antitumor antibiotics , 1982 .

[25]  S. Carter Adriamycin-a review. , 1975, Journal of the National Cancer Institute.

[26]  L. Hammett,et al.  Physical organic chemistry , 1940 .

[27]  N. Nissen,et al.  Adriamycin, an antitumour antibiotic: a review with special reference to daunomycin. , 1975, Danish medical bulletin.

[28]  E. Mimnaugh,et al.  Differential effects of anthracycline drugs on rat heart and liver microsomal reduced nicotinamide adenine dinucleotide phosphate-dependent lipid peroxidation. , 1982, Cancer research.

[29]  D. Crothers,et al.  Kinetics and sequence specificity of drug-DNA interactions: an in vitro transcription assay. , 1986, Biochemistry.

[30]  V. Rizzo,et al.  Kinetic studies of anthracycline-DNA interaction by fluorescence stopped flow confirm a complex association mechanism. , 1989, Biochemistry.

[31]  T. Koopmans,et al.  Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms , 1934 .

[32]  J. Doroshow,et al.  Mitochondrial NADH dehydrogenase‐catalyzed oxygen radical production by adriamycin, and the relative inactivity of 5‐iminodaunorubicin , 1983, FEBS letters.

[33]  Susannah L. Scott,et al.  Electron affinities of benzo-, naphtho-, and anthraquinones determined from gas-phase equilibria measurements , 1988 .

[34]  S. Baskin Principles of Cardiac Toxicology , 1991 .

[35]  R. Parr,et al.  Electronegativity: The density functional viewpoint , 1978 .

[36]  H. Nohl,et al.  OH.-generation by adriamycin semiquinone and H2O2; an explanation for the cardiotoxicity of anthracycline antibiotics. , 1983, Biochemical and biophysical research communications.

[37]  J. Zweier,et al.  5-Iminodaunomycin. An anthracycline with unique properties. , 1987, The Journal of biological chemistry.