Comparison of Landsat-8 and Sentinel-2 Data for Estimation of Leaf Area Index in Temperate Forests

With the launch of the Sentinel-2 satellites, a European capacity has been created to ensure continuity of Landsat and SPOT observations. In contrast to previous sensors, Sentinel-2′s multispectral imager (MSI) incorporates three additional spectral bands in the red-edge (RE) region, which are expected to improve the mapping of vegetation traits. The objective of this study was to compare Sentinel-2 MSI and Landsat-8 OLI data for the estimation of leaf area index (LAI) in temperate, deciduous broadleaf forests. We used hemispherical photography to estimate effective LAI at 36 field plots. We then built and compared simple and multiple linear regression models between field-based LAI and spectral bands and vegetation indices derived from Landsat-8 and Sentinel-2, respectively. Our main findings are that Sentinel-2 predicts LAI with comparable accuracy to Landsat-8. The best Landsat-8 models predicted LAI with a root-mean-square error (RMSE) of 0.877, and the best Sentinel-2 model achieved an RMSE of 0.879. In addition, Sentinel-2′s RE bands and RE-based indices did not improve LAI prediction. Thirdly, LAI models showed a high sensitivity to understory vegetation when tree cover was sparse. According to our findings, Sentinel-2 is capable of delivering data continuity at high temporal resolution.

[1]  Xuexia Chen,et al.  Using lidar and effective LAI data to evaluate IKONOS and Landsat 7 ETM+ vegetation cover estimates in a ponderosa pine forest , 2004 .

[2]  J. Hanes Biophysical Applications of Satellite Remote Sensing , 2014 .

[3]  S. Liang,et al.  Leaf Area Index Models , 2008 .

[4]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[5]  A. Kuusk,et al.  Impact of understory vegetation on forest canopy reflectance and remotely sensed LAI estimates , 2006 .

[6]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[7]  Yoram J. Kaufman,et al.  Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near‐infrared channels , 2003 .

[8]  R. McMurtrie,et al.  Estimation of leaf area index in eucalypt forest using digital photography , 2007 .

[9]  Joachim Hill,et al.  An Operational Radiometric Landsat Preprocessing Framework for Large-Area Time Series Applications , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[10]  J. Dungan,et al.  Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. , 1990, Tree physiology.

[11]  N. Broge,et al.  Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density , 2001 .

[12]  Christiane Schmullius,et al.  Assessment of the mapping of fractional woody cover in southern African savannas using multi-temporal and polarimetric ALOS PALSAR L-band images , 2015 .

[13]  Paul J. Curran,et al.  The relationships between the chlorophyll concentration, LAI and reflectance of a simple vegetation canopy , 1983 .

[14]  D. Lawlor Photosynthesis, productivity and environment , 1995 .

[15]  Jing M. Chen,et al.  Determining digital hemispherical photograph exposure for leaf area index estimation , 2005 .

[16]  Christina Gloeckner,et al.  Modern Applied Statistics With S , 2003 .

[17]  Frédéric Baret,et al.  Review of methods for in situ leaf area index determination Part I. Theories, sensors and hemispherical photography , 2004 .

[18]  J. Chen,et al.  Defining leaf area index for non‐flat leaves , 1992 .

[19]  Nicholas C. Coops,et al.  Virtual constellations for global terrestrial monitoring , 2015 .

[20]  Steven W. Running,et al.  Remote sensing of temperate coniferous forest leaf area index The influence of canopy closure, understory vegetation and background reflectance , 1990 .

[21]  W. Cohen,et al.  Hyperspectral versus multispectral data for estimating leaf area index in four different biomes , 2004 .

[22]  Luis Alonso,et al.  Evaluation of Sentinel-2 Red-Edge Bands for Empirical Estimation of Green LAI and Chlorophyll Content , 2011, Sensors.

[23]  Clement Atzberger,et al.  Estimation of vegetation LAI from hyperspectral reflectance data: Effects of soil type and plant architecture , 2008, Int. J. Appl. Earth Obs. Geoinformation.

[24]  Joachim Hill,et al.  An efficient approach to standardizing the processing of hemispherical images for the estimation of forest structural attributes , 2012 .

[25]  Nicholas C. Coops,et al.  Characterizing temperate forest structural and spectral diversity with Hyperion EO-1 data , 2010 .

[26]  Ronald D. Snee,et al.  Validation of Regression Models: Methods and Examples , 1977 .

[27]  N. Breda Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. , 2003, Journal of experimental botany.

[28]  P. Deschamps,et al.  Atmospheric modeling for space measurements of ground reflectances, including bidirectional properties. , 1979, Applied optics.

[29]  V. Engel,et al.  Increased leaf area dominates carbon flux response to elevated CO2 in stands of Populus deltoides (Bartr.) , 2005 .

[30]  J. Qu,et al.  NMDI: A normalized multi‐band drought index for monitoring soil and vegetation moisture with satellite remote sensing , 2007 .

[31]  D. Lloyd,et al.  A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery , 1990 .

[32]  J. Norman,et al.  Instrument for Indirect Measurement of Canopy Architecture , 1991 .

[33]  Holly Croft,et al.  The applicability of empirical vegetation indices for determining leaf chlorophyll content over different leaf and canopy structures , 2014 .

[34]  S. Leblanc,et al.  A Shortwave Infrared Modification to the Simple Ratio for LAI Retrieval in Boreal Forests: An Image and Model Analysis , 2000 .

[35]  R. Dickinson,et al.  Evaluation of the Utility of Satellite-Based Vegetation Leaf Area Index Data for Climate Simulations , 2001 .

[36]  Steven E. Franklin,et al.  Remote Sensing of Forest Environments , 2003, Springer US.

[37]  Joe Premier,et al.  Natural disturbance by bark beetle offsets climate change effects on streamflow in headwater catchments of the Bohemian Forest , 2018 .

[38]  Brian O'Connor,et al.  Analysis of Sentinel-2 and RapidEye for Retrieval of Leaf Area Index in a Saltmarsh Using a Radiative Transfer Model , 2019, Remote. Sens..

[39]  G. D’Urso,et al.  Experimental assessment of the Sentinel-2 band setting for RTM-based LAI retrieval of sugar beet and maize , 2009 .

[40]  Matthias Drusch,et al.  Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services , 2012 .

[41]  M. Heurich,et al.  Factors affecting the spatio-temporal dispersion of Ips typographus (L.) in Bavarian Forest National Park: A long-term quantitative landscape-level analysis , 2011 .

[42]  Weimin Ju,et al.  Retrieving leaf chlorophyll content using a matrix-based vegetation index combination approach , 2019, Remote Sensing of Environment.

[43]  José F. Moreno,et al.  rown and green LAI mapping through spectral indices , 2014 .

[44]  Dirk Pflugmacher,et al.  Numerical Terradynamic Simulation Group 7-2006 MODIS land cover and LAI Collection 4 product quality across nine sites in the western hemisphere , 2018 .

[45]  Quevedo Amaya,et al.  Caracterización fisiológica y bioquímica de cuatro genotipos de algodón (Gossypium hirsutum L.) en condiciones de déficit hídrico , 2020 .

[46]  Jing Liu,et al.  Improving leaf area index (LAI) estimation by correcting for clumping and woody effects using terrestrial laser scanning , 2018, Agricultural and Forest Meteorology.

[47]  Miina Rautiainen,et al.  Reduced simple ratio better than NDVI for estimating LAI in Finnish pine and spruce stands , 2004 .

[48]  S. Running,et al.  Regional evaporation estimates from flux tower and MODIS satellite data , 2007 .

[49]  Christian Mielke,et al.  Assessment of Red-Edge Position Extraction Techniques: A Case Study for Norway Spruce Forests Using HyMap and Simulated Sentinel-2 Data , 2016 .

[50]  A. Rutter,et al.  A Predictive Model of Rainfall Interception in Forests. II. Generalization of the Model and Comparison with Observations in Some Coniferous and Hardwood Stands , 1975 .

[51]  J. Dungan,et al.  Generating global Leaf Area Index from Landsat: Algorithm formulation and demonstration , 2012 .

[52]  T. M. Lillesand,et al.  Estimating the leaf area index of North Central Wisconsin forests using the landsat thematic mapper , 1997 .

[53]  Jan G. P. W. Clevers,et al.  Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods - A comparison , 2015 .

[54]  S. Saatchi,et al.  Impact of spatial variability of tropical forest structure on radar estimation of aboveground biomass , 2011 .

[55]  F. M. Danson,et al.  RED-EDGE RESPONSE TO FOREST LEAF-AREA INDEX (VOL 16, PG 183, 1995) , 1995 .

[56]  A. Cutini,et al.  Digital hemispherical photography for estimating forest canopy properties: current controversies and opportunities , 2012 .

[57]  J. Ardö,et al.  Investigating the use of Landsat thematic mapper data for estimation of forest leaf area index in southern Sweden , 2003 .

[58]  Chen Chen,et al.  Comparative Analysis of Chinese HJ-1 CCD, GF-1 WFV and ZY-3 MUX Sensor Data for Leaf Area Index Estimations for Maize , 2018, Remote. Sens..

[59]  J. Dash,et al.  The MERIS terrestrial chlorophyll index , 2004 .

[60]  A. Huete,et al.  A review of vegetation indices , 1995 .

[61]  S. G. Nelson,et al.  Relationship Between Remotely-sensed Vegetation Indices, Canopy Attributes and Plant Physiological Processes: What Vegetation Indices Can and Cannot Tell Us About the Landscape , 2008, Sensors.

[62]  M. Rautiainen,et al.  Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index , 2017 .

[63]  Gary R. Watmough,et al.  Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation , 2013 .