The electrophysiological correlate of contour integration is similar for color and luminance mechanisms.

Contour integration perceptually links together similarly oriented line elements hidden between randomly oriented distracters. To investigate how contour integration depends on early sensory processing, we compared the electrophysiological correlate of contour integration of elements defined by luminance (black-and-white) or isoluminant color (red-and-green) contrasts. Detection performance for color- and luminance-defined contours (both open and closed) was matched. Detectable contours elicited a negative shift over posterior electrodes starting 220 ms after stimulus onset. The shift occurred for both color and luminance contrasts, even when possible luminance artifacts in red-and-green stimuli were masked. This indicates a common physiological processing stream for orientation-based contour integration of red-and-green and black-and-white elements.

[1]  John J. Foxe,et al.  Activation Timecourse of Ventral Visual Stream Object-recognition Areas: High Density Electrical Mapping of Perceptual Closure Processes , 2000, Journal of Cognitive Neuroscience.

[2]  K. Mullen,et al.  Orientation selectivity in luminance and color vision assessed using 2-d band-pass filtered spatial noise , 2005, Vision Research.

[3]  K. Mullen,et al.  How long range is contour integration in human color vision? , 2003, Visual Neuroscience.

[4]  Suzanne P. McKee,et al.  Constraints on long range interactions mediating contour detection , 1998, Vision Research.

[5]  Alfredo Romani,et al.  The effects of collinearity and orientation on texture visual evoked potentials , 2003, Clinical Neurophysiology.

[6]  R. Kakigi,et al.  Effects of Attention on Pattern-Reversal Visual Evoked Potentials: Foveal Field Stimulation Versus Peripheral Field Stimulation , 2004, Brain Topography.

[7]  R. Shapley,et al.  The spatial transformation of color in the primary visual cortex of the macaque monkey , 2001, Nature Neuroscience.

[8]  Vaegan,et al.  Visual evoked potentials standard (2004) , 2004, Documenta Ophthalmologica.

[9]  Michael Bach,et al.  Summation of texture segregation across orientation and spatial frequency: electrophysiological and psychophysical findings , 2000, Vision Research.

[10]  S. Dain,et al.  Clinical colour vision tests , 2004, Clinical & experimental optometry.

[11]  Pejman Sehatpour,et al.  Spatiotemporal dynamics of human object recognition processing: An integrated high-density electrical mapping and functional imaging study of “closure” processes , 2006, NeuroImage.

[12]  S. Tobimatsu,et al.  Human VEPs to isoluminant chromatic and achromatic sinusoidal gratings: Separation of parvocellular components , 1996, Brain Topography.

[13]  V. Porciatti,et al.  Retinal and cortical evoked responses to chromatic contrast stimuli. Specific losses in both eyes of patients with multiple sclerosis and unilateral optic neuritis. , 1996, Brain : a journal of neurology.

[14]  P. Cavanagh,et al.  Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[15]  E. Switkes,et al.  Visual evoked potentials in three-dimensional color space: Correlates of spatio-chromatic processing , 1994, Vision Research.

[16]  Clara Casco,et al.  A visual evoked potential correlate of global figure-ground segmentation , 1999, Vision Research.

[17]  F. Karayanidis,et al.  An exploration of varieties of visual attention: ERP findings. , 1999, Brain research. Cognitive brain research.

[18]  I Kovács,et al.  A closed curve is much more than an incomplete one: effect of closure in figure-ground segmentation. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Marta Kutas,et al.  Interpreting event-related brain potential (ERP) distributions: Implications of baseline potentials and variability with application to amplitude normalization by vector scaling , 2006, Biological Psychology.

[20]  G. Caputo,et al.  Amodal completion in texture visual evoked potentials , 1999, Vision Research.

[21]  M. Fahle,et al.  Electrophysiological correlates of purely temporal figure–ground segregation , 2003, Vision Research.

[22]  H. Heinze,et al.  An event-related brain potential study of visual selective attention to conjunctions of color and shape. , 1999, Psychophysiology.

[23]  J. Leon Kenemans,et al.  Selective attention to spatial frequency: an ERP and source localization analysis , 2002, Clinical Neurophysiology.

[24]  G. Plant,et al.  Insights into the different exploits of colour in the visual cortex , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[25]  D L Woods,et al.  Neural substrates for visual perceptual grouping in humans. , 2001, Psychophysiology.

[26]  Gianluca Campana,et al.  Attention modulates psychophysical and electrophysiological response to visual texture segmentation in humans , 2005, Vision Research.

[27]  M. Bach,et al.  Similar Electrophysiological Correlates of Texture Segregation Induced by Luminance, Orientation, Motion and Stereo , 1997, Vision Research.

[28]  Shozo Tobimatsu,et al.  Parvocellular and magnocellular contributions to visual evoked potentials in humans: stimulation with chromatic and achromatic gratings and apparent motion , 1995, Journal of the Neurological Sciences.

[29]  J. Kulikowski,et al.  Selective stimulation of colour mechanisms: an empirical perspective. , 1997, Spatial vision.

[30]  A Valberg,et al.  Visual evoked potentials and magnocellular and parvocellular segregation , 2000, Visual Neuroscience.

[31]  C. Herrmann,et al.  Gestalt perception modulates early visual processing , 2001, Neuroreport.

[32]  A. Watson,et al.  Quest: A Bayesian adaptive psychometric method , 1983, Perception & psychophysics.

[33]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[34]  Vittorio Porciatti,et al.  Normative data for onset VEPs to red-green and blue-yellow chromatic contrast , 1999, Clinical Neurophysiology.

[35]  G B Arden,et al.  Separable evoked retinal and cortical potentials from each major visual pathway: preliminary results. , 1989, The British journal of ophthalmology.

[36]  J. Kulikowski,et al.  Convergence of parvocellular and magnocellular information channels in the primary visual cortex of the macaque , 2002, The European journal of neuroscience.

[37]  Margot J. Taylor,et al.  Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. , 2000, Psychophysiology.

[38]  G. Meinhardt,et al.  Cue combination in a combined feature contrast detection and figure identification task , 2006, Vision Research.

[39]  G. Meinhardt,et al.  Synergy of features enables detection of texture defined figures. , 2006, Spatial vision.

[40]  K T Mullen,et al.  Processing Time of Contour Integration: The Role of Colour, Contrast, and Curvature , 2001, Perception.

[41]  G. Meinhardt,et al.  Feature synergy depends on feature contrast and objecthood , 2004, Vision Research.

[42]  Manfred Fahle,et al.  The electrophysiological correlate of contour integration is modulated by task demands , 2006, Brain Research.

[43]  D. Field,et al.  Integration of contours: new insights , 1999, Trends in Cognitive Sciences.

[44]  John S Werner,et al.  Topography of the chromatic pattern-onset VEP. , 2003, Journal of vision.

[45]  S. Hillyard,et al.  Selective attention to the color and direction of moving stimuli: Electrophysiological correlates of hierarchical feature selection , 1996, Perception & psychophysics.

[46]  J. Braun On the detection of salient contours. , 1999, Spatial vision.

[47]  A. Schwaninger,et al.  Configural Processing and Perceptions of Head Tilt , 2005, Perception.

[48]  G G Celesia,et al.  The effects of luminance and chromatic background flicker on the human visual evoked potential , 1996, Visual Neuroscience.

[49]  C. C. Wood,et al.  Scalp distributions of event-related potentials: an ambiguity associated with analysis of variance models. , 1985, Electroencephalography and clinical neurophysiology.

[50]  Manfred Fahle,et al.  Closure facilitates contour integration , 2007, Vision Research.

[51]  J. J. Lange,et al.  An ERP study of visual spatial attention and letter target detection for isoluminant and nonisoluminant stimuli. , 1997, Psychophysiology.

[52]  G. Caputo,et al.  Edge detection and surface `filling in' as shown by texture visual evoked potentials , 1999, Clinical Neurophysiology.

[53]  I J Murray,et al.  Amplitude and phase variations of harmonic components in human achromatic and chromatic visual evoked potentials , 1996, Visual Neuroscience.

[54]  Kathy T Mullen,et al.  Contour integration in color vision: a common process for the blue–yellow, red–green and luminance mechanisms? , 2000, Vision Research.

[55]  David J. Field,et al.  Contour integration by the human visual system: Evidence for a local “association field” , 1993, Vision Research.

[56]  Andreas Keil,et al.  Neuronal Synchronization and Selective Color Processing in the Human Brain , 2004, Journal of Cognitive Neuroscience.

[57]  M. Bach,et al.  The Freiburg Visual Acuity test--automatic measurement of visual acuity. , 1996, Optometry and vision science : official publication of the American Academy of Optometry.

[58]  H. Bülthoff,et al.  Perceptual Organization of Local Elements into Global Shapes in the Human Visual Cortex , 2003, Current Biology.

[59]  D. Kiper,et al.  Chromatic properties of neurons in macaque area V2 , 1997, Visual Neuroscience.

[60]  Andreas K. Kreiter,et al.  Rapid contour integration in macaque monkeys , 2005, Vision Research.

[61]  R. Verleger,et al.  An ERP indicator of processing relevant gestalts in masked priming. , 2005, Psychophysiology.

[62]  Marta Kutas,et al.  The intractability of scaling scalp distributions to infer neuroelectric sources. , 2002, Psychophysiology.

[63]  S Tobimatsu,et al.  Effect of check size on the pattern reversal visual evoked potential. , 1991, Electroencephalography and clinical neurophysiology.

[64]  M Fahle,et al.  Feature-specific electrophysiological correlates of texture segregation , 2003, Vision Research.