Nash tuning for optimal balance of the servo/regulation operation in robust PID control

In this paper we propose a multi-objective optimization approach for the tuning of one degree-of-freedom proportional-integral-derivative controllers where both the trade-off between the servo and regulation operation modes and the trade-off between performance and robustness are considered. After having quantified the loss of performance that occurs when robustness is taken into account in the optimal design of the controller a tuning rule is proposed based on the Nash solution. A balanced robust tuning is obtained simply starting from a first-order-plus-dead-time model of the (self-regulating) process.

[1]  Tore Hägglund,et al.  Automatic Tuning of Simple Regulators , 1984 .

[2]  Ramón Vilanova,et al.  Multiobjective tuning of PI controller using the NNC Method: Simplified problem definition and guidelines for decision making , 2013, 2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA).

[3]  K.J. ÅSTRÖM,et al.  Design of PI Controllers based on Non-Convex Optimization , 1998, Autom..

[4]  Ramon Vilanova,et al.  PID autotuning for weighted servo/regulation control operation , 2010 .

[5]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[6]  R. Vilanova,et al.  Optimality comparison of 2DoF PID implementations , 2014, 2014 18th International Conference on System Theory, Control and Computing (ICSTCC).

[7]  John A. Miller,et al.  TUNING CONTROLLERS WITH ERROR-INTEGRAL CRITERIA , 1967 .

[8]  K.J. Astrom,et al.  Design of PID controllers based on constrained optimization , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[9]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[10]  Xavier Blasco Ferragud,et al.  Multiobjective controller design handling human preferences , 2006, Eng. Appl. Artif. Intell..

[11]  J. G. Ziegler,et al.  Optimum Settings for Automatic Controllers , 1942, Journal of Fluids Engineering.

[12]  Weng Khuen Ho,et al.  Tuning of PID Controllers based on Gain and Phase Margin Specifications , 1993 .

[13]  Gilberto Reynoso-Meza,et al.  Algoritmos Evolutivos y su empleo en el ajuste de controladores del tipo PID: Estado Actual y Perspectivas , 2013 .

[14]  D. P. Atherton,et al.  Automatic tuning of optimum PID controllers , 1993 .

[15]  K. Åström,et al.  Performance and robustness trade-offs in PID control , 2014 .

[16]  Aidan O'Dwyer,et al.  Handbook of PI and PID controller tuning rules , 2003 .

[17]  R. Toscano A simple robust PI/PID controller design via numerical optimization approach , 2004 .

[18]  Ramon Vilanova,et al.  Nash-based criteria for selection of Pareto Optimal PI controller , 2013, 2013 17th International Conference on System Theory, Control and Computing (ICSTCC).

[19]  Paul W. Murrill,et al.  TUNING CONTROLLERS FOR SET POINT CHANGES. , 1970 .

[20]  Min-Sen Chiu,et al.  Robust PID controller design via LMI approach , 2002 .

[21]  A. Messac,et al.  The normalized normal constraint method for generating the Pareto frontier , 2003 .

[22]  Antonio Visioli,et al.  Practical PID Control , 2006 .

[23]  Saeed Tavakoli,et al.  Multi-objective optimization approach to the PI tuning problem , 2007, 2007 IEEE Congress on Evolutionary Computation.

[24]  R.H.C. Takahashi,et al.  H2/H∞ Robust PID Synthesis for Uncertain Systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.