Optimization of Mean-Shift scale parameters on the EGEE grid

This paper studies the optimization of Mean-Shift (MS) image filtering scale parameters. A parameter sweep experiment representing 164 days of CPU is performed on the EGEE grid. The mathematical foundations of Mean-Shift and the grid environment used for the deployment are described in details. The experiments and results are then discussed highlighting the efficiency of gradient ascent algorithm for MS parameters optimization and a number of grid observations related to data transfers, reliability, task scheduling, CPU time and usability.

[1]  Dorin Comaniciu,et al.  An Algorithm for Data-Driven Bandwidth Selection , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Olivier Basset,et al.  VARIABLE BANDWIDTH MEAN SHIFT FOR SMOOTHING ULTRASONIC IMAGES , 2005 .

[3]  Johan Montagnat,et al.  Grid-enabled Virtual Screening Against Malaria , 2006, Journal of Grid Computing.

[4]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Olivier Basset,et al.  MULTIPARAMETRIC SMOOTHING BASED ON MEAN SHIFT PROCEDURE FOR ULTRASOUND DATA SEGMENTATION , 2005 .

[6]  Dorin Comaniciu,et al.  Vessel detection by mean shift based ray propagation , 2001, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2001).

[7]  Lorenza Saitta,et al.  Characterization of a computational grid as a complex system , 2009, GMAC '09.

[8]  Dorin Comaniciu,et al.  Robust analysis of feature spaces: color image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  Dorin Comaniciu,et al.  Mean shift analysis and applications , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[10]  Dorin Comaniciu,et al.  The Variable Bandwidth Mean Shift and Data-Driven Scale Selection , 2001, ICCV.

[11]  Thomas M. Breuel,et al.  A Branch and Bound Algorithm for Finding the Modes in Kernel Density Estimates , 2009, Int. J. Comput. Intell. Appl..

[12]  Dorin Comaniciu,et al.  A common framework for nonlinear diffusion, adaptive smoothing, bilateral filtering and mean shift , 2004, Image Vis. Comput..

[13]  J. Moscicki Distributed analysis environment for HEP and interdisciplinary applications , 2003 .

[14]  Larry D. Hostetler,et al.  The estimation of the gradient of a density function, with applications in pattern recognition , 1975, IEEE Trans. Inf. Theory.

[15]  Gérard Gimenez,et al.  Hybrid Approach for Multiparametric Mean Shift Filtering , 2006, 2006 International Conference on Image Processing.

[16]  Johannes Bernarding,et al.  Performance Analysis of Diffusion Tensor Imaging in an Academic Production Grid , 2010, 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing.

[17]  Tristan Glatard,et al.  A Virtual Laboratory for Medical Image Analysis , 2010, IEEE Transactions on Information Technology in Biomedicine.

[18]  Francisco Vilar Brasileiro,et al.  On the efficacy, efficiency and emergent behavior of task replication in large distributed systems , 2007, Parallel Comput..

[19]  Carlo Tomasi,et al.  Mean shift is a bound optimization , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  D. Comaniciu,et al.  The variable bandwidth mean shift and data-driven scale selection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.