An analytical model to predict the equivalent creep strain rate of a lattice truss panel structure

[1]  Peng Wang,et al.  A novel carbon fiber reinforced lattice truss sandwich cylinder: Fabrication and experiments , 2016 .

[2]  D. Fang,et al.  Macroscopic response of carbon-fiber pyramidal truss core panel taking account of local defect , 2015 .

[3]  J. Gong,et al.  Experimental and numerical study on the residual stress in a lattice truss sandwich structure: Effect of geometrical dimensions of punching die , 2013 .

[4]  Yorikata Mizokami,et al.  Development of structural design procedure of plate-fin heat exchanger for HTGR , 2013 .

[5]  N. Ohno,et al.  Homogenized elastic–viscoplastic behavior of anisotropic open-porous bodies with pore pressure , 2012 .

[6]  Tian Jian Lu,et al.  Experimental and simulated Compressive Properties of Work-Hardened X-Type Lattice Truss Structures , 2012 .

[7]  Changqing Chen,et al.  Multiaxial creep of low density open-cell foams , 2012 .

[8]  F. Xuan,et al.  Viscoelastic model to describe mechanical response of compact heat exchangers with plate-foam structure , 2011 .

[9]  S. Tu,et al.  Numerical modelling and nanoindentation experiment to study the brazed residual stresses in an X-type lattice truss sandwich structure , 2011 .

[10]  Nobutada Ohno,et al.  Homogenized elastic–viscoplastic behavior of plate-fin structures at high temperatures: Numerical analysis and macroscopic constitutive modeling , 2010 .

[11]  P. Beiss,et al.  Characterisation and simulation of the creep behaviour of Nicrofer 6025HT wire material at 650°C , 2009 .

[12]  T. Lu,et al.  Ultralight X-type lattice sandwich structure (II): Micromechanics modeling and finite element analysis , 2009 .

[13]  D. Fang,et al.  Nonlinear mechanical properties of lattice truss materials , 2009 .

[14]  Jong-Shin Huang,et al.  Creep-buckling of open-cell foams , 2009 .

[15]  D. Dunand,et al.  Effects of strut geometry and pore fraction on creep properties of cellular materials , 2009 .

[16]  A. Mortensen,et al.  Creep of aluminium-magnesium open cell foam , 2009 .

[17]  Jong-Shin Huang,et al.  Creep-rupturing of open-cell foams , 2008 .

[18]  Howard P. Hodson,et al.  Cross flow heat exchange of textile cellular metal core sandwich panels , 2007 .

[19]  D. Dunand,et al.  Finite element modeling of creep deformation in cellular metals , 2007 .

[20]  Yang Wei,et al.  An equivalent continuum method of lattice structures , 2006 .

[21]  L. Valdevit,et al.  Active cooling by metallic sandwich structures with periodic cores , 2005 .

[22]  Douglas T. Queheillalt,et al.  The effects of topology upon fluid-flow and heat-transfer within cellular copper structures , 2004 .

[23]  David C. Dunand,et al.  Measurement and modeling of creep in open-cell NiAl foams , 2003 .

[24]  L. Gibson,et al.  Creep of sandwich beams with metallic foam cores , 2003 .

[25]  Lorna J. Gibson,et al.  Creep of open-cell Voronoi foams , 2003 .

[26]  M. Ashby,et al.  The creep of cellular solids , 1999 .

[27]  Lorna J. Gibson,et al.  Creep behavior of a closed-cell aluminum foam , 1999 .

[28]  Douglas T. Queheillalt,et al.  A multifunctional heat pipe sandwich panel structure , 2008 .