Effect of sodium mercaptoacetic acid on different antimicrobial disks in the sodium mercaptoacetic acid double disk synergy test for detection of IMP-1 metallo-β-lactamase-producing Pseudomonas aeruginosa isolates in Japan.

[1]  H. Mikamo,et al.  Evaluation of commercial phenotypic assays for the detection of IMP- or New Delhi metallo-β-lactamase-producing Enterobacteriaceae isolates in Japan. , 2017, Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy.

[2]  H. Mikamo,et al.  Evaluation of the modified sodium mercaptoacetic acid double disk synergy test for detecting the metallo-β-lactamase producing Enterobacteriaceae , 2017 .

[3]  K. Hiramatsu,et al.  Detection of IMP Metallo-β-Lactamase in Carbapenem-Nonsusceptible Enterobacteriaceae and Non-Glucose-Fermenting Gram-Negative Rods by Immunochromatography Assay , 2013, Journal of Clinical Microbiology.

[4]  P. Nordmann,et al.  Multiplex PCR for detection of acquired carbapenemase genes. , 2011, Diagnostic microbiology and infectious disease.

[5]  Gabriela C. Moraes,et al.  Metallo-β-Lactamase Detection: Comparative Evaluation of Double-Disk Synergy versus Combined Disk Tests for IMP-, GIM-, SIM-, SPM-, or VIM-Producing Isolates , 2008, Journal of Clinical Microbiology.

[6]  Y. Ishii,et al.  Evaluation of dipicolinic acid for detection of IMP- or VIM- type metallo-beta-lactamase-producing Pseudomonas aeruginosa clinical isolates. , 2005, Diagnostic microbiology and infectious disease.

[7]  D. Yong,et al.  Evaluation of the Hodge Test and the Imipenem-EDTA Double-Disk Synergy Test for Differentiating Metallo-β-Lactamase-Producing Isolates of Pseudomonas spp. and Acinetobacter spp , 2003, Journal of Clinical Microbiology.

[8]  D. Livermore,et al.  Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? , 2002, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[9]  T. Nishino,et al.  Alterations of susceptibility of Pseudomonas aeruginosa by overproduction of multidrug efflux systems, MexAB-OprM, MexCD-OprJ, and MexXY/OprM to carbapenems: substrate specificities of the efflux systems , 2002, Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy.

[10]  D. Yong,et al.  Modified Hodge and EDTA-disk synergy tests to screen metallo-beta-lactamase-producing strains of Pseudomonas and Acinetobacter species. , 2001, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[11]  Y. Arakawa,et al.  Convenient Test for Screening Metallo-β-Lactamase-Producing Gram-Negative Bacteria by Using Thiol Compounds , 2000, Journal of Clinical Microbiology.

[12]  S. Mitsuhashi,et al.  Estimation of outer membrane permeability of carbapenem antibiotics to Pseudomonas aeruginosa , 1999, Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy.

[13]  K. Bush,et al.  Biochemical comparison of imipenem, meropenem and biapenem: permeability, binding to penicillin-binding proteins, and stability to hydrolysis by beta-lactamases. , 1995, The Journal of antimicrobial chemotherapy.

[14]  Livermore Dm,et al.  In-vitro activity of biapenem, compared with imipenem and meropenem, against Pseudomonas aeruginosa strains and mutants with known resistance mechanisms. , 1994 .

[15]  D. Livermore,et al.  In-vitro activity of biapenem, compared with imipenem and meropenem, against Pseudomonas aeruginosa strains and mutants with known resistance mechanisms. , 1994, The Journal of antimicrobial chemotherapy.