Effect of sodium mercaptoacetic acid on different antimicrobial disks in the sodium mercaptoacetic acid double disk synergy test for detection of IMP-1 metallo-β-lactamase-producing Pseudomonas aeruginosa isolates in Japan.
暂无分享,去创建一个
H. Mikamo | Daisuke Sakanashi | Narimi Miyazaki | Yuzuka Kawamoto | Tomoko Ohno | Atsuko Yamada | Isao Koita | H. Suematsu | N. Asai | Yusuke Koizumi | Y. Yamagishi | M. Hagihara | Setsuo Miyajima
[1] H. Mikamo,et al. Evaluation of commercial phenotypic assays for the detection of IMP- or New Delhi metallo-β-lactamase-producing Enterobacteriaceae isolates in Japan. , 2017, Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy.
[2] H. Mikamo,et al. Evaluation of the modified sodium mercaptoacetic acid double disk synergy test for detecting the metallo-β-lactamase producing Enterobacteriaceae , 2017 .
[3] K. Hiramatsu,et al. Detection of IMP Metallo-β-Lactamase in Carbapenem-Nonsusceptible Enterobacteriaceae and Non-Glucose-Fermenting Gram-Negative Rods by Immunochromatography Assay , 2013, Journal of Clinical Microbiology.
[4] P. Nordmann,et al. Multiplex PCR for detection of acquired carbapenemase genes. , 2011, Diagnostic microbiology and infectious disease.
[5] Gabriela C. Moraes,et al. Metallo-β-Lactamase Detection: Comparative Evaluation of Double-Disk Synergy versus Combined Disk Tests for IMP-, GIM-, SIM-, SPM-, or VIM-Producing Isolates , 2008, Journal of Clinical Microbiology.
[6] Y. Ishii,et al. Evaluation of dipicolinic acid for detection of IMP- or VIM- type metallo-beta-lactamase-producing Pseudomonas aeruginosa clinical isolates. , 2005, Diagnostic microbiology and infectious disease.
[7] D. Yong,et al. Evaluation of the Hodge Test and the Imipenem-EDTA Double-Disk Synergy Test for Differentiating Metallo-β-Lactamase-Producing Isolates of Pseudomonas spp. and Acinetobacter spp , 2003, Journal of Clinical Microbiology.
[8] D. Livermore,et al. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? , 2002, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.
[9] T. Nishino,et al. Alterations of susceptibility of Pseudomonas aeruginosa by overproduction of multidrug efflux systems, MexAB-OprM, MexCD-OprJ, and MexXY/OprM to carbapenems: substrate specificities of the efflux systems , 2002, Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy.
[10] D. Yong,et al. Modified Hodge and EDTA-disk synergy tests to screen metallo-beta-lactamase-producing strains of Pseudomonas and Acinetobacter species. , 2001, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.
[11] Y. Arakawa,et al. Convenient Test for Screening Metallo-β-Lactamase-Producing Gram-Negative Bacteria by Using Thiol Compounds , 2000, Journal of Clinical Microbiology.
[12] S. Mitsuhashi,et al. Estimation of outer membrane permeability of carbapenem antibiotics to Pseudomonas aeruginosa , 1999, Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy.
[13] K. Bush,et al. Biochemical comparison of imipenem, meropenem and biapenem: permeability, binding to penicillin-binding proteins, and stability to hydrolysis by beta-lactamases. , 1995, The Journal of antimicrobial chemotherapy.
[14] Livermore Dm,et al. In-vitro activity of biapenem, compared with imipenem and meropenem, against Pseudomonas aeruginosa strains and mutants with known resistance mechanisms. , 1994 .
[15] D. Livermore,et al. In-vitro activity of biapenem, compared with imipenem and meropenem, against Pseudomonas aeruginosa strains and mutants with known resistance mechanisms. , 1994, The Journal of antimicrobial chemotherapy.