Metadevices with Potential Practical Applications

Metamaterials are “new materials” with different superior physical properties, which have generated great interest and become popular in scientific research. Various designs and functional devices using metamaterials have formed a new academic world. The application concept of metamaterial is based on designing diverse physical structures that can break through the limitations of traditional optical materials and composites to achieve extraordinary material functions. Therefore, metadevices have been widely studied by the academic community recently. Using the properties of metamaterials, many functional metadevices have been well investigated and further optimized. In this article, different metamaterial structures with varying functions are reviewed, and their working mechanisms and applications are summarized, which are near-field energy transfer devices, metamaterial mirrors, metamaterial biosensors, and quantum-cascade detectors. The development of metamaterials indicates that new materials will become an important breakthrough point and building blocks for new research domains, and therefore they will trigger more practical and wide applications in the future.

[1]  J. Faist,et al.  InP-based quantum cascade detectors in the mid-infrared , 2006 .

[2]  Shankar Balasubramanian,et al.  Small-molecule-mediated G-quadruplex isolation from human cells. , 2010, Nature chemistry.

[3]  A. Phan,et al.  Metamaterials-based label-free nanosensor for conformation and affinity biosensing. , 2013, ACS nano.

[4]  Piotr J Cywinski,et al.  Ion-selective formation of a guanine quadruplex on DNA origami structures. , 2014, Angewandte Chemie.

[5]  Wang Zhanguo,et al.  Room temperature quantum cascade detector operating at 4.3 μm , 2014 .

[6]  Paul Crozat,et al.  GaN/AlGaN waveguide quantum cascade photodetectors at λ ≈ 1.55 μm with enhanced responsivity and ∼40 GHz frequency bandwidth , 2013 .

[7]  Silvia Di Fonzo,et al.  Crowding and conformation interplay on human DNA G-quadruplex by ultraviolet resonant Raman scattering. , 2019, Physical chemistry chemical physics : PCCP.

[8]  Jinghua Teng,et al.  Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays. , 2013, Nanoscale.

[9]  K. Kohler,et al.  Quantum Cascade Detectors , 2009, IEEE Journal of Quantum Electronics.

[10]  L. Wong,et al.  Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing. , 2011, Nano letters.

[11]  E. Narimanov,et al.  Hyperbolic metamaterials , 2013, 2015 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR).

[12]  Koray Aydin,et al.  Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing. , 2011, ACS nano.

[13]  Jiangtao Lv,et al.  Plasmon-enhanced sensing: current status and prospects , 2015 .

[14]  P. I. Pradeepkumar,et al.  Thioflavin T as an efficient inducer and selective fluorescent sensor for the human telomeric G-quadruplex DNA. , 2013, Journal of the American Chemical Society.

[15]  Eunice Sok Ping Leong,et al.  Tuning plasmon resonance in depth-variant plasmonic nanostructures , 2016 .

[16]  David R. Smith,et al.  Terahertz compressive imaging with metamaterial spatial light modulators , 2014, Nature Photonics.

[17]  G. Strasser,et al.  Resonant metamaterial detectors based on THz quantum-cascade structures , 2014, Scientific Reports.

[18]  Asaf Albo,et al.  Photocurrent spectroscopy of intersubband transitions in GaInAsN/(Al)GaAs asymmetric quantum well infrared photodetectors , 2012 .

[19]  D. Chan,et al.  G-quadruplexes for luminescent sensing and logic gates , 2013, Nucleic acids research.

[20]  Jiangtao Lv,et al.  Incident-angle dependent color tuning from a single plasmonic chip. , 2014, Nanotechnology.

[21]  G. Si,et al.  Fabrication and characterization of well-aligned plasmonic nanopillars with ultrasmall separations , 2014 .

[22]  Sheng Shen,et al.  Tuning near field radiation by doped silicon , 2013 .

[23]  Nikolay I. Zheludev,et al.  Mirror that does not change the phase of reflected waves , 2006 .

[24]  D. Sievenpiper,et al.  High-impedance electromagnetic surfaces with a forbidden frequency band , 1999 .

[25]  Werner Schrenk,et al.  Mid-infrared surface transmitting and detecting quantum cascade device for gas-sensing , 2016, Scientific Reports.

[26]  Q-Han Park,et al.  Metamaterials and chiral sensing: a review of fundamentals and applications , 2019, Nanophotonics.

[27]  Robert Bogue Sensing with metamaterials: a review of recent developments , 2017 .

[28]  Zhaowei Liu,et al.  Design, fabrication and characterization of indefinite metamaterials of nanowires , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[29]  Bin Chen,et al.  Tuning Localized Surface Plasmon Resonance of Nanoporous Gold with a Silica Shell for Surface Enhanced Raman Scattering , 2019, Nanomaterials.

[30]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[31]  S. Balasubramanian,et al.  A single-molecule platform for investigation of interactions between G-quadruplexes and small-molecule ligands. , 2011, Nature chemistry.

[32]  M. Beck,et al.  Ultrastrong Coupling of the Cyclotron Transition of a 2D Electron Gas to a THz Metamaterial , 2011, Science.

[33]  Sergey Kosolobov,et al.  SERS-active dielectric metamaterials based on periodic nanostructures. , 2016, Optics express.

[34]  Ali Bahari,et al.  Preparation and characterization silver/zirconium nickel oxide nanocomposites with negative electromagnetic parameters , 2017 .

[35]  Xin Li,et al.  Rapid and sensitive biomarker detection using molecular imprinting polymer hydrogel and surface-enhanced Raman scattering , 2018, Royal Society Open Science.

[36]  A. Scherer,et al.  Thermally Controllable Silicon Photonic Crystal Nanobeam Cavity without Surface Cladding for Sensing Applications , 2015 .

[37]  Riccardo Messina,et al.  Graphene-based photovoltaic cells for near-field thermal energy conversion , 2012, Scientific Reports.

[38]  N. Hoa,et al.  Numerical Study of an Efficient Broadband Metamaterial Absorber in Visible Light Region , 2019, IEEE Photonics Journal.

[39]  Gennaro Piccialli,et al.  Label-free probing of G-quadruplex formation by surface-enhanced Raman scattering. , 2011, Analytical chemistry.

[40]  Silong Peng,et al.  Interference lithography patterned large area plasmonic nanodisks for infrared detection , 2014 .

[41]  Hugo Nguyen,et al.  Numerical Study of a Wide-Angle and Polarization-Insensitive Ultrabroadband Metamaterial Absorber in Visible and Near-Infrared Region , 2019, IEEE Photonics Journal.

[42]  C. Campbell,et al.  Probing biomolecular interactions using surface enhanced Raman spectroscopy: label-free protein detection using a G-quadruplex DNA aptamer. , 2010, Chemical communications.

[43]  Tom G. Mackay,et al.  Electromagnetic surface waves guided by the planar interface of isotropic chiral materials , 2019, Journal of the Optical Society of America B.

[44]  Ruirui Chen,et al.  Electromagnetic characteristics of Hilbert curve-based metamaterials , 2014 .

[45]  Jay M Enoch,et al.  History of Mirrors Dating Back 8000 Years , 2006, Optometry and vision science : official publication of the American Academy of Optometry.

[46]  M. Carras,et al.  Quantum cascade photodetector , 2004 .

[47]  Xingjie Ni,et al.  Optical Metasurfaces: Progress and Applications , 2018, Annual Review of Materials Research.

[48]  Nikolay I. Zheludev,et al.  Optical magnetic mirrors , 2006 .

[49]  Cumali Sabah,et al.  Investigation of graphene-integrated tunable metamaterials in THz regime , 2018 .

[50]  James B Delehanty,et al.  Quantitative LSPR imaging for biosensing with single nanostructure resolution. , 2013, Biophysical journal.

[51]  S. Krishna,et al.  Photovoltaic quantum dot quantum cascade infrared photodetector , 2012 .

[52]  A. Kildishev,et al.  Broadband Light Bending with Plasmonic Nanoantennas , 2012, Science.

[53]  Gianluca Galzerano,et al.  High-precision molecular spectroscopy in the mid-infrared using quantum cascade lasers , 2019, Applied Physics B.

[54]  David L. Kaplan,et al.  Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays , 2009, Proceedings of the National Academy of Sciences.

[55]  Nikolay I Zheludev,et al.  The Road Ahead for Metamaterials , 2010, Science.

[56]  G. V. Dedkov,et al.  Radiative heat exchange of spherical particles with plates of a metal and an insulator , 2011 .

[57]  Michal Lipson,et al.  Near-field radiative cooling of nanostructures. , 2012, Nano letters.

[58]  George C. Schatz,et al.  A nanoscale optical biosensor: The long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles , 2004 .

[59]  Wei-Chuan Shih,et al.  Nanoporous Gold Disks Functionalized with Stabilized G-Quadruplex Moieties for Sensing Small Molecules. , 2016, ACS applied materials & interfaces.

[60]  Paula J. Bates,et al.  AGRO100 inhibits activation of nuclear factor-κB (NF-κB) by forming a complex with NF-κB essential modulator (NEMO) and nucleolin , 2006, Molecular Cancer Therapeutics.

[61]  M. Buchanan,et al.  High-frequency quantum-well infrared photodetectors measured by microwave-rectification technique , 1996 .

[62]  Gennady Shvets,et al.  Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. , 2012, Nature materials.

[63]  Ebrahim Forati,et al.  Planar hyperlens based on a modulated graphene monolayer , 2013, 1311.4791.

[64]  Xiu Zhang,et al.  A Novel Structure of Left-Handed Material With Equal Magnetic and Electric Resonant Frequency , 2017, IEEE Transactions on Magnetics.

[65]  A. Majumdar,et al.  Nanowires for enhanced boiling heat transfer. , 2009, Nano letters.

[66]  S. Tretyakov,et al.  Simple and Accurate Analytical Model of Planar Grids and High-Impedance Surfaces Comprising Metal Strips or Patches , 2007, IEEE Transactions on Antennas and Propagation.

[67]  Oleg P. Tolbanov,et al.  Influence of Split-Ring Resonators on the Terahertz Transmission of a Planar Waveguide , 2015 .

[68]  Lei Wang,et al.  A Polarization-Dependent Normal Incident Quantum Cascade Detector Enhanced Via Metamaterial Resonators , 2016, Nanoscale Research Letters.

[69]  Milan Mrksich,et al.  A conformation- and ion-sensitive plasmonic biosensor. , 2011, Nano letters.

[70]  Stefano Rossi,et al.  Grating-Coupled Surface Plasmon Resonance (GC-SPR) Optimization for Phase-Interrogation Biosensing in a Microfluidic Chamber , 2018, Sensors.

[71]  Takehito Suzuki,et al.  Metamaterial Demonstrates Both a High Refractive Index and Extremely Low Reflection in the 0.3-THz Band , 2017 .

[72]  Juan Carlos Cuevas,et al.  Radiative heat transfer in the extreme near field , 2015, Nature.

[73]  Achikanath C Bhasikuttan,et al.  Targeting G-quadruplex structures with extrinsic fluorogenic dyes: promising fluorescence sensors. , 2015, Chemical communications.

[74]  B. Regan,et al.  Probing Planck's law with incandescent light emission from a single carbon nanotube. , 2009, Physical review letters.

[75]  G. Strasser,et al.  Terahertz meta-atoms coupled to a quantum well intersubband transition. , 2011, Optics express.

[76]  George C. Schatz,et al.  Nanoscale Optical Biosensor : Short Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles , 2022 .

[77]  Cedric Troadec,et al.  One-step synthesis of zero-dimensional hollow nanoporous gold nanoparticles with enhanced methanol electrooxidation performance , 2014, Nature Communications.

[78]  Masashi Yoshimura,et al.  Enhancing terahertz magnetic near field induced by a micro-split-ring resonator with a tapered waveguide. , 2018, Optics letters.

[79]  N. Maizels,et al.  High Affinity Interactions of Nucleolin with G-G-paired rDNA* , 1999, The Journal of Biological Chemistry.

[80]  Nicolas Grandjean,et al.  Two-color GaN/AlGaN quantum cascade detector at short infrared wavelengths of 1 and 1.7 μm , 2012 .

[81]  Ning Li,et al.  19 μm quantum cascade infrared photodetectors , 2013 .

[82]  G. Si,et al.  Direct and accurate patterning of plasmonic nanostructures with ultrasmall gaps. , 2013, Nanoscale.

[83]  Paul W Bohn,et al.  Whole-cell biosensing by siderophore-based molecular recognition and localized surface plasmon resonance. , 2019, Analytical methods : advancing methods and applications.

[84]  Kwong-Kit Choi,et al.  Parameter Study of Resonator-Quantum Well Infrared Photodetectors , 2017, IEEE Journal of Quantum Electronics.

[85]  Michael Jetter,et al.  Ultra-sensitive mid-infrared evanescent field sensors combining thin-film strip waveguides with quantum cascade lasers. , 2012, The Analyst.

[86]  Jingli Yuan,et al.  A spectroscopic study on the interactions of porphyrin with G-quadruplex DNAs. , 2006, Biochemistry.

[87]  Zongfu Yu,et al.  Enhancing far-field thermal emission with thermal extraction , 2013, Nature Communications.

[88]  Chun Kit Kwok,et al.  Spectroscopic analysis reveals the effect of a single nucleotide bulge on G-quadruplex structures. , 2019, Chemical communications.

[89]  E. Hendry,et al.  Ultrasensitive detection and characterization of biomolecules using superchiral fields. , 2010, Nature nanotechnology.

[90]  Sheng Shen,et al.  Near-field energy extraction with hyperbolic metamaterials. , 2015, Nano letters.

[91]  Claire F. Gmachl,et al.  High performance, room temperature, broadband II-VI quantum cascade detector , 2015 .

[92]  Jérôme Faist,et al.  Quantum cascade lasers operating from 1.2to1.6THz , 2007 .

[93]  Yi Cui,et al.  Metamaterial mirrors in optoelectronic devices. , 2014, Nature nanotechnology.

[94]  Zhipeng Wei,et al.  High-Performance Bound-to-Continuum Quantum Cascade Lasers at λ ~ 8 μm , 2018, Journal of Nanoscience and Nanotechnology.

[95]  B. F. Levine,et al.  Quantum‐well infrared photodetectors , 1993 .

[96]  Werner Schrenk,et al.  Terahertz Active Photonic Crystals for Condensed Gas Sensing , 2011, Sensors.

[97]  Barbara A Rasco,et al.  Rapid analysis of malachite green and leucomalachite green in fish muscles with surface-enhanced resonance Raman scattering. , 2015, Food chemistry.

[98]  Yuzhang Liang,et al.  Research advances of hyperbolic metamaterials and metasurfaces , 2017 .

[99]  Eunice Sok Ping Leong,et al.  Plasmon-induced transparency in coupled triangle-rod arrays , 2015, Nanotechnology.

[100]  Mattias Beck,et al.  Strong light-matter coupling at terahertz frequencies at room temperature in electronic LC resonators , 2010 .

[101]  Bin Zhang,et al.  A broadband tunable terahertz negative refractive index metamaterial , 2018, Scientific Reports.

[102]  Yan Zhang,et al.  Optically tuneable broadband terahertz metamaterials using photosensitive semiconductor material , 2018, Journal of Modern Optics.

[103]  Mathieu Francoeur,et al.  Near-field radiative transfer based thermal rectification using doped silicon , 2011 .

[104]  David R. Smith,et al.  Controlled-reflectance surfaces with film-coupled colloidal nanoantennas , 2012, Nature.

[105]  S. Shen,et al.  Broadband near-field radiative thermal emitter/absorber based on hyperbolic metamaterials: Direct numerical simulation by the Wiener chaos expansion method , 2013 .

[106]  Sunghoon Kwon,et al.  Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. , 2011, Nature nanotechnology.

[107]  Duane C. Karns,et al.  Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer , 2009 .

[108]  A. Rogalski,et al.  Third-generation infrared photodetector arrays , 2009 .

[109]  Yuancheng Fan,et al.  Broadband plasmonic metamaterial absorber with fish-scale structure at visible frequencies , 2016 .

[110]  John O Trent,et al.  Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. , 2009, Experimental and molecular pathology.

[111]  M. Qiu,et al.  Near field thermal memory device , 2014 .

[112]  V. Sridharan,et al.  Plasma Membrane Nucleolin Is a Receptor for the Anticancer Aptamer AS1411 in MV4-11 Leukemia Cells , 2009, Molecular Pharmacology.

[113]  Sebastian Wachsmann-Hogiu,et al.  Conformational changes in quadruplex oligonucleotide structures probed by Raman spectroscopy , 2010, Biomedical optics express.

[114]  Claire F. Gmachl,et al.  Room temperature and high responsivity short wavelength II-VI quantum well infrared photodetector , 2013, CLEO: 2013.

[115]  Margaret Buchanan,et al.  Near‐Room‐Temperature Mid‐Infrared Quantum Well Photodetector , 2011, Advanced materials.

[116]  Shankar Balasubramanian,et al.  Visualization and selective chemical targeting of RNA G-quadruplex structures in the cytoplasm of human cells. , 2014, Nature chemistry.

[117]  Fen Qiao,et al.  A Facile Approach of Fabricating Various ZnO Microstructures via Electrochemical Deposition , 2019, Journal of Electronic Materials.

[118]  Deborah Sivco,et al.  Wavelength independent normal incident quantum cascade detectors. , 2016, Optics express.

[119]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[120]  Marek Piliarik,et al.  Real-time monitoring of biomolecular interactions in blood plasma using a surface plasmon resonance biosensor , 2010, Analytical and bioanalytical chemistry.

[121]  Gang Chen,et al.  Thermal near-field radiative transfer between two spheres , 2008, 0909.0765.

[122]  M. Wegener,et al.  Negative Refractive Index at Optical Wavelengths , 2007, Science.

[123]  Shana O Kelley,et al.  An electrochemical clamp assay for direct, rapid analysis of circulating nucleic acids in serum. , 2015, Nature chemistry.

[124]  Andrey B. Krysa,et al.  λ∼3.1 μm room temperature InGaAs/AlAsSb/InP quantum cascade lasers , 2009 .

[125]  Jonathan M Cooper,et al.  Plasmonic split-ring resonators as dichroic nanophotonic DNA biosensors. , 2009, Journal of the American Chemical Society.

[126]  Gang Chen,et al.  Surface phonon polaritons mediated energy transfer between nanoscale gaps. , 2009, Nano letters.

[127]  G. Wurtz,et al.  Plasmonic nanorod metamaterials for biosensing. , 2009, Nature materials.

[128]  Md. Shamim Anower,et al.  Numerical analysis of graphene coated surface plasmon resonance biosensors for biomedical applications , 2018 .

[129]  Jeong Ho Cho,et al.  Multifunctional graphene optoelectronic devices capable of detecting and storing photonic signals. , 2015, Nano letters.

[130]  Gang Chen,et al.  Near-field radiative heat transfer between a sphere and a substrate , 2008, 0909.0784.

[131]  Seungwoo Lee,et al.  Design of optical metamaterial mirror with metallic nanoparticles for floating-gate graphene optoelectronic devices. , 2015, Optics express.