Analysis of Threshold Current Behavior for Bulk and Quantum-Well Germanium Laser Structures

We analyze the optical gain of tensile-strained, n-germanium (n-Ge) material taking bandgap narrowing (BGN) for heavily doped Ge into account. Both the direct bandgap and indirect bandgap are narrowed by 60 meV. Our new modeling explains the wide lasing spectrum of 1520-1700 nm in electrically pumped Ge lasers. The calculated materials gain can reach 1000 cm-1 when the injected carrier density is ~mid-1019 cm-3 with a combination of 0.25% tensile strain and 4.5×1019 cm-3 n-type doping. The threshold current density is estimated to be 0.53 kA/cm2 for an optimized edge-emitting double-heterojunction Ge device, comparable to bulk III-V lasers. We also review current progress on Ge quantum-well (QW) structures. The threshold current density of most Ge QW structures is similar to bulk Ge. Only tensile-strained QWs show reduced threshold currents.

[1]  Yasuhiko Ishikawa,et al.  Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si ( 100 ) , 2004 .

[2]  J. Aengenheister,et al.  Minority carrier lifetime in highly doped Ge , 1972 .

[3]  D. Miller,et al.  Strong quantum-confined Stark effect in germanium quantum-well structures on silicon , 2005, Nature.

[4]  Jianlin Liu,et al.  Ge/Si Self-Assembled Quantum Dots and Their Optoelectronic Device Applications , 2007, Proceedings of the IEEE.

[5]  Ying Zhang,et al.  Optical properties of Ge self-organized quantum dots in Si , 1998 .

[6]  K. Brunner,et al.  Si/Ge nanostructures , 2002 .

[7]  S. Takeoka,et al.  Size-dependent near-infrared photoluminescence from Ge nanocrystals embedded in SiO2 matrices , 1998 .

[8]  N. Motta,et al.  Composition of Ge(Si) islands in the growth of Ge on Si(111) by x-ray spectromicroscopy , 2004 .

[9]  Christophe Delerue,et al.  Quantum confinement in germanium nanocrystals , 2000 .

[10]  Chin‐Yi Tsai,et al.  Theoretical model for intravalley and intervalley free-carrier absorption in semiconductor lasers: beyond the classical Drude model , 1998 .

[11]  R. Soref,et al.  Electrooptical effects in silicon , 1987 .

[12]  Jurgen Michel,et al.  Direct band gap narrowing in highly doped Ge , 2013 .

[13]  A. Zunger,et al.  Electronic structure of ultrathin SinGen strained superlattices: The possibility of direct band gaps , 1989 .

[14]  Jurgen Michel,et al.  Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si. , 2007, Optics express.

[15]  David J. Roulston,et al.  A simple expression for band gap narrowing (BGN) in heavily doped Si, Ge, GaAs and GexSi1−x strained layers , 1991 .

[16]  J. Bowers,et al.  III‐V/silicon photonics for on‐chip and intra‐chip optical interconnects , 2010 .

[17]  J. Bowers,et al.  Electrically pumped hybrid AlGaInAs-silicon evanescent laser. , 2006, Optics express.

[18]  M. Guzzi,et al.  Photoluminescence decay of direct and indirect transitions in Ge/SiGe multiple quantum wells , 2012 .

[19]  M. Romagnoli,et al.  An electrically pumped germanium laser. , 2012, Optics express.

[20]  Van de Walle Cg Band lineups and deformation potentials in the model-solid theory. , 1989 .

[21]  J. Tersoff,et al.  Three-dimensional isocompositional profiles of buried SiGe/Si(001) Islands , 2007 .

[22]  Van de Walle CG Band lineups and deformation potentials in the model-solid theory. , 1989, Physical review. B, Condensed matter.

[23]  J. Michel,et al.  Infrared absorption of n-type tensile-strained Ge-on-Si. , 2013, Optics letters.

[24]  Won-Tien Tsang,et al.  Extremely low threshold (AlGa)As graded‐index waveguide separate‐confinement heterostructure lasers grown by molecular beam epitaxy , 1982 .

[25]  C. Haas Infrared Absorption in Heavily Doped n -Type Germanium , 1962 .

[26]  J. Michel,et al.  Ge-on-Si laser operating at room temperature. , 2010, Optics letters.