The temperature dependence of optical properties of InGaN alloys
暂无分享,去创建一个
Bin Liu | Shulin Gu | Hui Chen | Rong Zhang | Xiangqian Xiu | Deyi Fu | Rong Zhang | Youdou Zheng | B. Liu | D. Fu | Ming Li | Z. Xie | S. Gu | X. Xiu | Youdou Zheng | ChuanZhen Zhao | Ming Li | Zili Xie | Hui Chen | Chuan-zhen Zhao
[1] Shuji Nakamura,et al. Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm , 1997 .
[2] Shih-Chun Lin,et al. Carrier relaxation in InGaN/GaN quantum wells with nanometer-scale cluster structures , 2004 .
[3] S. O. Usov,et al. Analysis of the local indium composition in ultrathin InGaN layers , 2007 .
[4] Tao Wang,et al. Effect of silicon doping on the optical and transport properties of InGaN/GaN multiple-quantum-well structures , 2000 .
[5] Q. Li,et al. Thermal redistribution of localized excitons and its effect on the luminescence band in InGaN ternary alloys , 2001 .
[6] Zheng,et al. Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates. , 1996, Physical review. B, Condensed matter.
[7] Eugene E. Haller,et al. Temperature dependence of the fundamental band gap of InN , 2003 .
[8] H. Morkoç,et al. Optical studies of carrier dynamics and non-equilibrium optical phonons in nitride-based wide bandgap semiconductors , 2005 .
[9] S. Feng,et al. Quantum-well-width dependencies of postgrowth thermal annealing effects of InGaN/GaN quantum wells , 2003 .
[10] Y. S. Park,et al. Dependence of carrier localization in InGaN/GaN multiple-quantum wells on well thickness , 2006 .
[11] C. Hong,et al. Structural and Optical Characteristics of InGaN/GaN Multi-Quantum Wells Grown on a- and c-Plane Sapphire Substrates , 2004 .
[12] A. Zukauskas,et al. Photoluminescence temperature behavior and Monte Carlo simulation of exciton hopping in InGaN multiple quantum wells , 2005 .
[13] Hsiang-Szu Chang,et al. Localized states in InxGa1−xN epitaxial film , 2009 .
[14] H. Liu,et al. Temperature-dependent emission intensity and energy shift in InGaN/GaN multiple-quantum-well light-emitting diodes , 2003 .
[15] Petr G. Eliseev,et al. BLUE TEMPERATURE-INDUCED SHIFT AND BAND-TAIL EMISSION IN INGAN-BASED LIGHT SOURCES , 1997 .
[16] Umesh K. Mishra,et al. “S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells , 1998 .
[17] M. Leroux,et al. Luminescence and absorption in InGaN epitaxial layers and the van Roosbroeck–Shockley relation , 2000 .
[18] S. Chang,et al. Studies of InGaN∕GaN multiquantum-well green-light-emitting diodes grown by metalorganic chemical vapor deposition , 2004 .
[19] Guangde Chen,et al. Time-resolved photoluminescence studies of InGaN epilayers , 1996 .
[20] Zhe Chuan Feng,et al. Optical properties of InxGa1−xN alloys grown by metalorganic chemical vapor deposition , 1998 .
[21] A. Bell,et al. Exciton freeze-out and thermally activated relaxation at local potential fluctuations in thick AlxGa1−xN layers , 2004 .
[22] Z. Feng,et al. Optical transitions in InxGa1−xN alloys grown by metalorganic chemical vapor deposition , 1996 .
[23] W. Shan,et al. Temperature dependence of interband transitions in GaN grown by metalorganic chemical vapor deposition , 1995 .