Anisotropic damage mechanics based on strain energy equivalence and equivalent elliptical microcracks

Abstract A theory of damage mechanics is introduced based on a principle of strain energy equivalence. This principle is used to develop the effective continuum elastic properties of a damaged solid in terms of the undamaged elastic properties and a scalar damage field. The damage variable is defined as the volume fraction of a damage zone associated with equivalent elliptical microcracks. This definition provides a means by which a damaged isotropic material can exhibit anisotropic (orthotropic) properties, and entails determining effective crack orientation and geometry factors from the local deformation. Strain energy dissipation associated with crack growth (not nucleation) is used to develop a consistent damage evolution equation. This evolution equation is related to the standard power law model of crack growth commonly used in fracture mechanics, and to the equivalent stress measure commonly used in mechanics of plastic deformation. The combination of representing local damage as an effective elliptical crack volume fraction, a consistent damage evolution equation, and the determination of effective elastic properties using a strain energy equivalence principle yields a simple, yet powerful, approach to predicting failure of mechanical components.

[1]  J. Hult Mechanics of Visco-Elastic Media and Bodies , 1975 .

[2]  H. Irschik,et al.  Material Science- and Numerical Aspects in the Dynamics of Damaging Structures , 1991 .

[3]  B. Budiansky On the elastic moduli of some heterogeneous materials , 1965 .

[4]  Jean Lemaitre,et al.  Physical Non-Linearities in Structural Analysis , 1981 .

[5]  Anthony G. Evans,et al.  A simple method for evaluating slow crack growth in brittle materials , 1973 .

[6]  Dusan Krajcinovic,et al.  The Continuous Damage Theory of Brittle Materials, Part 1: General Theory , 1981 .

[7]  F. Erdogan,et al.  Stress Intensity Factors , 1983 .

[8]  D. Krajcinovic,et al.  A Mesomechanical Model for Brittle Deformation Processes: Part II , 1989 .

[9]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[10]  D. L. Hall,et al.  A new approach to the challenge of machinery prognostics , 1995 .

[11]  J. Lemaître A CONTINUOUS DAMAGE MECHANICS MODEL FOR DUCTILE FRACTURE , 1985 .

[12]  Dusan Krajcinovic,et al.  Constitutive Equations for Damaging Materials , 1983 .

[13]  F. Leckie,et al.  The effect of creep constitutive and damage relationships upon the rupture time of a solid circular torsion bar , 1973 .

[14]  G. Sih,et al.  Mathematical theories of brittle fracture. , 1968 .

[15]  Sia Nemat-Nasser,et al.  Overall moduli of solids with microcracks: Load-induced anisotropy , 1983 .

[16]  B. Budiansky,et al.  Elastic moduli of a cracked solid , 1976 .

[17]  Sumio Murakami,et al.  A Continuum Theory of Creep and Creep Damage , 1981 .

[18]  Jean Lemaitre,et al.  A Course on Damage Mechanics , 1992 .

[19]  N. Laws,et al.  The effect of micro-crack systems on the loss of stiffness of brittle solids , 1987 .

[20]  Dusan Krajcinovic,et al.  Damage model for brittle elastic solids with unequal tensile and compressive strengths , 1994 .

[21]  Usik Lee,et al.  DYNAMIC CONTINUUM MODELING OF BEAMLIKE SPACE STRUCTURES USING FINITE ELEMENT MATRICES , 1990 .

[22]  G. Maugin The Thermomechanics of Plasticity and Fracture , 1992 .

[23]  Dusan Krajcinovic,et al.  A self-consistent model for microcrack-weakened solids , 1987 .

[24]  F. Sidoroff,et al.  Description of Anisotropic Damage Application to Elasticity , 1981 .

[25]  Howard L. Schreyer,et al.  Bifurcations in elastic-plastic materials , 1993 .

[26]  D. Krajcinovic Creep of Structures —A Continuous Damage Mechanics Approach , 1983 .

[27]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[28]  Jean Lemaitre,et al.  Local approach of fracture , 1986 .

[29]  Dusan Krajcinovic,et al.  Some fundamental issues of damage mechanics , 1995 .

[30]  F. A. Leckie,et al.  The constitutive equations of continuum creep damage mechanics , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[31]  F. A. Leckie,et al.  Creep Constitutive Equations for Damaged Materials , 1987 .

[32]  Yiu-Wing Mai,et al.  A statistical theory of time-dependent fracture for brittle materials , 1988 .

[33]  J. Chaboche,et al.  A Non-Linear Model of Creep-Fatigue Damage Cumulation and Interaction , 1975 .

[34]  Dusan Krajcinovic,et al.  Damage tensors and the crack density distribution , 1993 .

[35]  L. N. McCartney,et al.  A new approach to Weibull's statistical theory of brittle fracture , 1979, International Journal of Fracture.

[36]  Jean Lemaitre,et al.  Micro-mechanics of crack initiation , 1990 .

[37]  Mark Kachanov,et al.  Continuum Model of Medium with Cracks , 1980 .

[38]  B. Voight,et al.  A Relation to Describe Rate-Dependent Material Failure , 1989, Science.

[39]  D. Krajcinovic,et al.  Introduction to continuum damage mechanics , 1986 .

[40]  David R Hayhurst,et al.  Constitutive equations for creep rupture , 1977 .

[41]  Alan Hoenig,et al.  Elastic moduli of a non-randomly cracked body , 1979 .

[42]  C. L. Chow,et al.  An anisotropic theory of continuum damage mechanics for ductile fracture , 1987 .

[43]  David R Hayhurst,et al.  Creep in Structures , 1981 .

[44]  E. Kröner Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls , 1958 .

[45]  Griffith's theory of brittle fracture in three dimensions , 1967 .

[46]  Dusan Krajcinovic,et al.  Continuous Damage Mechanics Revisited: Basic Concepts and Definitions , 1985 .

[47]  G. Cailletaud,et al.  Mechanical Description of Viscoplastic and Damage Behaviour Under Variable Temperature in Presence of Microstructural Instabilities , 1981 .

[48]  D. E. Carlson,et al.  An introduction to thermomechanics , 1983 .

[49]  Lee Davison,et al.  Thermomechanical constitution of spalling elastic bodies , 1973 .

[50]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[51]  S. Yazdani,et al.  On a Class of Continuum Damage Mechanics Theories , 1993 .

[52]  W. Weibull A Statistical Distribution Function of Wide Applicability , 1951 .

[53]  J. C. Simo,et al.  Strain- and stress-based continuum damage models—I. Formulation , 1987 .

[54]  Equivalent continuum models of large platelike lattice structures , 1994 .

[55]  Jean Lemaitre,et al.  Application of Damage Concepts to Predict Creep-Fatigue Failures , 1979 .

[56]  Z. Hashin,et al.  The Elastic Moduli of Fiber-Reinforced Materials , 1964 .

[57]  Dusan Krajcinovic,et al.  Statistical aspects of the continuous damage theory , 1982 .