Closed form solution for the equations of motion for constrained linear mechanical systems and generalizations: An algebraic approach

Abstract In this paper, a mathematical methodology is presented for the determination of the solution of motion for linear constrained mechanical systems applicable also to systems with singular coefficients. For mathematical completeness and also to incorporate some other interesting cases, the methodology is formulated for a general class of higher order matrix differential equations. Thus, describing the system in an autoregressive moving average (ARMA) form, the closed form solution is derived in terms of the finite and infinite Jordan pairs of the system׳s polynomial matrix. The notion of inconsistent initial conditions is considered and an explicit formula for the homogeneous system is given. In this respect, the methodology discussed in the present note provides an alternative view to the problem of computation of the response of complex multi-body systems. Two interesting examples are provided and applications of the equation to such systems are illustrated.

[1]  D. Trumper,et al.  Initial conditions, generalized functions, and the laplace transform troubles at the origin , 2007, IEEE Control Systems.

[2]  Athanasios A. Pantelous,et al.  HIGHER-ORDER LINEAR MATRIX DESCRIPTOR DIFFERENTIAL EQUATIONS OF APOSTOL-KOLODNER TYPE , 2009 .

[3]  Jan C. Willems,et al.  From time series to linear system - Part II. Exact modelling , 1986, Autom..

[4]  Phailaung Phohomsiri,et al.  Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  Aaron D. Schutte Permissible control of general constrained mechanical systems , 2010, J. Frankl. Inst..

[6]  Athanasios A. Pantelous,et al.  Response determination of linear dynamical systems with singular matrices: A polynomial matrix theory approach , 2017 .

[7]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[8]  R. Kalaba,et al.  Analytical Dynamics: A New Approach , 1996 .

[9]  Jia Yu,et al.  A local construction of the Smith normal form of a matrix polynomial , 2008, J. Symb. Comput..

[10]  Stephan Trenn,et al.  Solution Concepts for Linear DAEs: A Survey , 2013 .

[11]  R. Kalaba,et al.  A new perspective on constrained motion , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[12]  R. Ben Taher,et al.  Some explicit formulas for the polynomial decomposition of the matrix exponential and applications , 2002 .

[13]  Stephen S.-T. Yau,et al.  More explicit formulas for the matrix exponential , 1997 .

[14]  Feng Ding,et al.  Computation of matrix exponentials of special matrices , 2013, Appl. Math. Comput..

[15]  N. Karampetakis On the solution space of discrete time AR-representations over a finite time horizon , 2004 .

[16]  M. Hautus The Formal Laplace Transform for Smooth Linear Systems , 1976 .

[17]  J. Willems Paradigms and puzzles in the theory of dynamical systems , 1991 .

[18]  Tom M. Apostol,et al.  Explicit Formulas for Solutions of the Second-Order Matrix Differential Equation Y″ = ay , 1975 .

[19]  Athanasios A. Pantelous,et al.  Linear Random Vibration of Structural Systems with Singular Matrices , 2016 .

[20]  D. Bernstein Matrix Mathematics: Theory, Facts, and Formulas , 2009 .

[21]  A. Vardulakis,et al.  On the solution and impulsive behaviour of polynomial matrix descriptions of free linear multivariable systems , 1999 .

[22]  Athanasios A. Pantelous,et al.  On the relation of the Drazin inverse and matrix pencil theory methods for the study of generalized linear systems , 2007 .

[23]  F. Lewis A survey of linear singular systems , 1986 .

[24]  Athanasios A. Pantelous,et al.  On the solution of higher order linear homogeneous complex σ-α descriptor matrix differential systems of Apostol-Kolodner type , 2014, J. Frankl. Inst..

[25]  Jon Wilkening,et al.  An algorithm for computing Jordan chains and inverting analytic matrix functions , 2007 .

[26]  J. Willems The Behavioral Approach to Open and Interconnected Systems , 2007, IEEE Control Systems.

[27]  L. Dai,et al.  Singular Control Systems , 1989, Lecture Notes in Control and Information Sciences.

[28]  H. Schumacher Impulsive-Smooth Behavior in Multimode Systems. Part II , 2016 .

[29]  Athanasios A. Pantelous,et al.  Statistical Linearization of Nonlinear Structural Systems with Singular Matrices , 2016 .

[30]  J. M. Schumacher,et al.  Impulsive-smooth behavior in multimode systems part I: State-space and polynomial representations , 1996, Autom..

[31]  Jan C. Willems,et al.  From time series to linear system - Part I. Finite dimensional linear time invariant systems , 1986, Autom..

[32]  Nir Cohen,et al.  Spectral analysis of regular matrix polynomials , 1983 .

[33]  N. Karampetakis,et al.  On the fundamental matrix of the inverse of a polynomial matrix and applications to ARMA representations , 2009 .

[34]  David S. Watkins,et al.  POLYNOMIAL EIGENVALUE PROBLEMS WITH HAMILTONIAN STRUCTURE , 2002 .

[35]  Athanasios A. Pantelous,et al.  On linear generalized neutral differential delay systems , 2009, J. Frankl. Inst..

[36]  A. Vardulakis Linear Multivariable Control: Algebraic Analysis and Synthesis Methods , 1991 .

[37]  Nicholas P. Karampetakis,et al.  On the solution of ARMA-representations , 1995 .

[38]  Ton Geerts,et al.  Regularity and singularity in linear-quadratic control subject to implicit continuous-time systems , 1992 .

[39]  Basil G. Mertzios,et al.  Computation of the inverse of a polynomial matrix and evaluation of its Laurent expansion , 1991 .

[40]  Dennis S. Bernstein,et al.  Second-Order Systems with Singular Mass Matrix and an Extension of Guyan Reduction , 1995, SIAM J. Matrix Anal. Appl..

[41]  J. G. Jalón,et al.  Multibody dynamics with redundant constraints and singular mass matrix: existence, uniqueness, and determination of solutions for accelerations and constraint forces , 2013 .

[42]  A. Pugh,et al.  Infinite elementary divisors of a matrix polynomial and implications , 1988 .

[43]  I. Kolodner On exp(tA) with A satisfying a polynomial , 1975 .

[44]  Luis Verde-Star,et al.  Operator Identities and the Solution of Linear Matrix Difference and Differential Equations , 1994 .

[45]  Athanasios A. Pantelous,et al.  THE DRAZIN INVERSE THROUGH THE MATRIX PENCIL APPROACH AND ITS APPLICATION TO THE STUDY OF GENERALIZED LINEAR SYSTEMS WITH RECTANGULAR OR SQUARE COEFFICIENT MATRICES , 2008 .

[46]  M. Rachidi,et al.  Linear matrix differential equations of higher-order and applications , 2008 .

[47]  Wassily Leontief Input-Output Economics , 1966 .

[48]  Nicholas J. Higham,et al.  NLEVP: A Collection of Nonlinear Eigenvalue Problems , 2013, TOMS.

[49]  C. D. Meyer,et al.  Generalized inverses of linear transformations , 1979 .

[50]  C. F. Gauss,et al.  Über Ein Neues Allgemeines Grundgesetz der Mechanik , 1829 .

[51]  A. Geerts,et al.  Impulsive-smooth behavior in multimode systems , 1994 .

[52]  Antonis-Ioannis G. Vardulakis,et al.  Evaluation of the reachability subspace of general form polynomial matrix descriptions (PMDs) , 1994, Kybernetika.

[53]  Firdaus E. Udwadia,et al.  New Approach to the Modeling of Complex Multibody Dynamical Systems , 2011 .

[54]  Ettore Pennestrì,et al.  Comparison of solution strategies for multibody dynamics equations , 2011 .

[55]  Athanasios A. Pantelous,et al.  A new approach for second‐order linear matrix descriptor differential equations of Apostol–Kolodner type , 2014 .

[56]  Ton Geerts Solvability conditions, consistency, and weak consistency for linear differential-algebraic equations and time-invariant singular systems: the general case , 1993 .