Ion Transport, Defect Chemistry, and the Device Physics of Hybrid Perovskite Solar Cells

Mastering the complexity of mixed ionic–electronic conduction in hybrid perovskite solar cells is a most critical challenge in the quest for further developing and, eventually, commercializing this...

[1]  Jay B. Patel,et al.  Halide Segregation in Mixed-Halide Perovskites: Influence of A-Site Cations , 2021, ACS energy letters.

[2]  D. Ginger,et al.  Scanning Kelvin Probe Microscopy Reveals That Ion Motion Varies with Dimensionality in 2D Halide Perovskites , 2020 .

[3]  J. Berry,et al.  Choose Your Own Adventure: Fabrication of Monolithic All‐Perovskite Tandem Photovoltaics , 2020, Advanced materials.

[4]  L. Avram,et al.  Eppur si Muove: Proton Diffusion in Halide Perovskite Single Crystals , 2020, Advanced materials.

[5]  A. Walsh,et al.  Lattice Compression Increases the Activation Barrier for Phase Segregation in Mixed-Halide Perovskites , 2020, ACS energy letters.

[6]  E. Kotomin,et al.  On the Way to Optoionics , 2020, Helvetica Chimica Acta.

[7]  A. Walsh,et al.  Hexagonal Stacking Faults Act as Hole-Blocking Layers in Lead Halide Perovskites , 2020, ACS Energy Letters.

[8]  J. Marohn,et al.  Light-Dependent Impedance Spectra and Transient Photoconductivity in a Ruddlesden–Popper 2D Lead–Halide Perovskite Revealed by Electrical Scanned Probe Microscopy and Accompanying Theory , 2020, The Journal of Physical Chemistry C.

[9]  A. Walsh,et al.  Probing the ionic defect landscape in halide perovskite solar cells , 2020, Nature Communications.

[10]  D. Cahen,et al.  Halide Diffusion in MAPbX3: Limits to Topotaxy for Halide Exchange in Perovskites , 2020 .

[11]  Duncan N. Johnstone,et al.  Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites , 2020, Nature.

[12]  U. Rau,et al.  What is a deep defect? Combining Shockley-Read-Hall statistics with multiphonon recombination theory , 2020 .

[13]  R. Evarestov,et al.  First-principles comparative study of perfect and defective CsPbX3 (X = Br, I) crystals. , 2020, Physical chemistry chemical physics : PCCP.

[14]  Li‐Min Liu,et al.  Synergy between Ion Migration and Charge Carrier Recombination in Metal-Halide Perovskites. , 2020, Journal of the American Chemical Society.

[15]  P. Kamat,et al.  How Interplay between Photo and Thermal Activation Dictates Halide Ion Segregation in Mixed Halide Perovskites , 2020 .

[16]  J. Maier,et al.  Photo‐Effect on Ion Transport in Mixed Cation and Halide Perovskites and Implications for Photo‐Demixing** , 2019, Angewandte Chemie.

[17]  P. Baker,et al.  Influence of bromide content on iodide migration in inverted MAPb(I1−xBrx)3 perovskite solar cells , 2019, Journal of Materials Chemistry A.

[18]  A. Hagfeldt,et al.  Crystal Orientation and Grain Size: Do They Determine Optoelectronic Properties of MAPbI3 Perovskite? , 2019, The journal of physical chemistry letters.

[19]  Bruno Ehrler,et al.  Local Crystal Misorientation Influences Non-radiative Recombination in Halide Perovskites , 2019, Joule.

[20]  Dane W. deQuilettes,et al.  Charge-Carrier Recombination in Halide Perovskites. , 2019, Chemical reviews.

[21]  D. Cahen,et al.  When defects become ‘dynamic’: halide perovskites: a new window on materials? , 2019, Materials Horizons.

[22]  J. Maier,et al.  Ionically Generated Built‐In Equilibrium Space Charge Zones—a Paradigm Change for Lead Halide Perovskite Interfaces , 2019, Advanced Functional Materials.

[23]  Andrew L. Johnson,et al.  Partial cation substitution reduces iodide ion transport in lead iodide perovskite solar cells , 2019, Energy & Environmental Science.

[24]  J. Bisquert,et al.  Kinetic and material properties of interfaces governing slow response and long timescale phenomena in perovskite solar cells , 2019, Energy & Environmental Science.

[25]  T. Unold,et al.  The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells , 2019, Energy & Environmental Science.

[26]  M. Green,et al.  Solar cell efficiency tables (version 54) , 2019, Progress in Photovoltaics: Research and Applications.

[27]  P. Kamat,et al.  Supporting Information Electrochemical Hole Injection Selectively Expels Iodide from Mixed Halide Perovskite Films , 2019 .

[28]  Seong Sik Shin,et al.  Achieving Long‐Term Operational Stability of Perovskite Solar Cells with a Stabilized Efficiency Exceeding 20% after 1000 h , 2019, Advanced science.

[29]  Lucy D. Whalley,et al.  Accumulation of Deep Traps at Grain Boundaries in Halide Perovskites , 2019, ACS Energy Letters.

[30]  J. Maier,et al.  Solid-State Ionics of Hybrid Halide Perovskites , 2019, Journal of the American Chemical Society.

[31]  A. Hagfeldt,et al.  Origin of apparent light-enhanced and negative capacitance in perovskite solar cells , 2019, Nature Communications.

[32]  Sean P. Dunfield,et al.  Reactions at noble metal contacts with methylammonium lead triiodide perovskites: Role of underpotential deposition and electrochemistry , 2019, APL Materials.

[33]  E. von Hauff,et al.  Impedance Spectroscopy for Emerging Photovoltaics , 2019, The Journal of Physical Chemistry C.

[34]  Yang Li,et al.  Bifunctional Organic Spacers for Formamidinium-Based Hybrid Dion-Jacobson Two-Dimensional Perovskite Solar Cells. , 2018, Nano letters.

[35]  M. Nazeeruddin,et al.  Dimensional tailoring of hybrid perovskites for photovoltaics , 2018, Nature Reviews Materials.

[36]  R. A. Souza,et al.  The thermodynamics and kinetics of iodine vacancies in the hybrid perovskite methylammonium lead iodide , 2018 .

[37]  T. Kirchartz,et al.  Research Update: Recombination and open-circuit voltage in lead-halide perovskites , 2018, APL Materials.

[38]  Rebecca A. Belisle,et al.  In Situ Measurement of Electric-Field Screening in Hysteresis-Free PTAA/FA0.83Cs0.17Pb(I0.83Br0.17)3/C60 Perovskite Solar Cells Gives an Ion Mobility of ∼3 × 10-7 cm2/(V s), 2 Orders of Magnitude Faster than Reported for Metal-Oxide-Contacted Perovskite Cells with Hysteresis. , 2018, Journal of the American Chemical Society.

[39]  M. Grätzel,et al.  Charge carrier chemistry in methylammonium lead iodide , 2018, Solid State Ionics.

[40]  David T. Limmer,et al.  Tunable Polaron Distortions Control the Extent of Halide Demixing in Lead Halide Perovskites. , 2018, The journal of physical chemistry letters.

[41]  K. Catchpole,et al.  The two faces of capacitance: New interpretations for electrical impedance measurements of perovskite solar cells and their relation to hysteresis , 2018, Journal of Applied Physics.

[42]  Yongbo Yuan,et al.  Ion‐Migration Inhibition by the Cation–π Interaction in Perovskite Materials for Efficient and Stable Perovskite Solar Cells , 2018, Advanced materials.

[43]  A. Walsh,et al.  Point defect engineering in thin-film solar cells , 2018, Nature Reviews Materials.

[44]  Michael Grätzel,et al.  Interaction of oxygen with halide perovskites , 2018 .

[45]  C. Brabec,et al.  Discerning recombination mechanisms and ideality factors through impedance analysis of high-efficiency perovskite solar cells , 2018 .

[46]  D. Ginger,et al.  Direct Observation and Quantitative Analysis of Mobile Frenkel Defects in Metal Halide Perovskites Using Scanning Kelvin Probe Microscopy , 2018, The Journal of Physical Chemistry C.

[47]  David G Lidzey,et al.  Ionic-to-electronic current amplification in hybrid perovskite solar cells: ionically gated transistor-interface circuit model explains hysteresis and impedance of mixed conducting devices , 2018, Energy & Environmental Science.

[48]  D. Ginger,et al.  Interplay of Mobile Ions and Injected Carriers Creates Recombination Centers in Metal Halide Perovskites under Bias , 2018 .

[49]  D. Reichman,et al.  What Remains Unexplained about the Properties of Halide Perovskites? , 2018, Advanced materials.

[50]  J. Bisquert,et al.  Unravelling the role of vacancies in lead halide perovskite through electrical switching of photoluminescence , 2018, Nature Communications.

[51]  M. Grätzel,et al.  Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition , 2018, Nature Materials.

[52]  A. Barker,et al.  Iodine chemistry determines the defect tolerance of lead-halide perovskites , 2018 .

[53]  L. Schmidt‐Mende,et al.  Quantification of ion migration in CH3NH3PbI3 perovskite solar cells by transient capacitance measurements , 2018, Materials Horizons.

[54]  P. Kamat,et al.  Light-Induced Anion Phase Segregation in Mixed Halide Perovskites , 2018 .

[55]  Lucy D. Whalley,et al.  H-Center and V-Center Defects in Hybrid Halide Perovskites , 2017 .

[56]  S. Stranks Nonradiative Losses in Metal Halide Perovskites , 2017 .

[57]  M. Grätzel,et al.  The Nature of Ion Conduction in Methylammonium Lead Iodide: A Multimethod Approach , 2017, Angewandte Chemie.

[58]  Anders Hagfeldt,et al.  Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells , 2017 .

[59]  Jinsong Huang,et al.  Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals. , 2016, Physical chemistry chemical physics : PCCP.

[60]  Adam Pockett,et al.  Microseconds, milliseconds and seconds: deconvoluting the dynamic behaviour of planar perovskite solar cells. , 2016, Physical chemistry chemical physics : PCCP.

[61]  David T. Limmer,et al.  Origin of Reversible Photoinduced Phase Separation in Hybrid Perovskites. , 2016, Nano letters.

[62]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[63]  A. Köhler,et al.  Iodine Migration and its Effect on Hysteresis in Perovskite Solar Cells , 2016, Advanced materials.

[64]  H. Snaith,et al.  Modulating the Electron-Hole Interaction in a Hybrid Lead Halide Perovskite with an Electric Field. , 2015, Journal of the American Chemical Society.

[65]  Yongbo Yuan,et al.  Photovoltaic Switching Mechanism in Lateral Structure Hybrid Perovskite Solar Cells , 2015 .

[66]  Michael Grätzel,et al.  The Significance of Ion Conduction in a Hybrid Organic-Inorganic Lead-Iodide-Based Perovskite Photosensitizer. , 2015, Angewandte Chemie.

[67]  Aron Walsh,et al.  Ionic transport in hybrid lead iodide perovskite solar cells , 2015, Nature Communications.

[68]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.

[69]  A. Walsh,et al.  Self-Regulation Mechanism for Charged Point Defects in Hybrid Halide Perovskites , 2014, Angewandte Chemie.

[70]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[71]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[72]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[73]  J. Maier Complex oxides: high temperature defect chemistry vs. low temperature defect chemistry , 2003 .

[74]  D. Cahen,et al.  Room-temperature detection of mobile impurities in compound semiconductors by transient ion drift , 1997 .

[75]  S.M.Sze,et al.  Surface States and Barrier Height of Metal‐Semiconductor Systems , 1965 .

[76]  Joachim Maier,et al.  Ionic conduction in space charge regions , 1995 .