Kernels in pretransitive digraphs

Let D be a digraph, V(D) and A(D) will denote the sets of vertices and arcs of D, respectively. A kernel N of D is an independent set of vertices such that for every w?V(D)-N there exists an arc from w to N. A digraph D is called right-pretransitive (resp. left-pretransitive) when (u,v)?A(D) and (v,w)?A(D) implies (u,w)?A(D) or (w,v)?A(D) (resp. (u,v)?A(D) and (v,w)?A(D) implies (u,w)?A(D) or (v,u)?A(D)). This concepts were introduced by P. Duchet in 1980. In this paper is proved the following result: Let D be a digraph. If D=D1?D2 where D1 is a right-pretransitive digraph, D2 is a left-pretransitive digraph and Di contains no infinite outward path for i?{1,2}, then D has a kernel.

[1]  Hortensia Galeana-Sánchez,et al.  On kernels and semikernels of digraphs , 1984, Discret. Math..

[2]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[3]  P. Duchet,et al.  Graphes Noyau-Parfaits , 1980 .

[4]  Pierre Duchet,et al.  A sufficient condition for a digraph to be kernel-perfect , 1987, J. Graph Theory.

[5]  Henry Meyniel,et al.  A note on kernel-critical graphs , 1981, Discret. Math..

[6]  M. Richardson,et al.  Solutions of Irreflexive Relations , 1953 .

[7]  M. Richardson Extension Theorems for Solutions of Irreflexive Relations. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Hortensia Galeana-Sánchez,et al.  Kernels in edge-colored digraphs , 1998, Discret. Math..

[9]  Norbert Sauer,et al.  On monochromatic paths in edge-coloured digraphs , 1982, J. Comb. Theory, Ser. B.