Handheld Frequency Domain Vector EMI Sensing for UXO Discrimination

Abstract : SERDP project MM-1537 entitled Handheld Frequency Domain Vector EMI Sensing for UXO Discrimination is complete. The GEM-3D+ incorporated two new aspects of EMI instrumentation with encouraging results: frequency domain vector receivers, and a beacon positioning system. This report contains the final design, engineering challenges, modeling advancements, and data analysis results from this project. This vector receiver coupled with the beacon positioning system resulted in a versatile prototype instrument delivering high quality, diverse data well suited to rigorous models of UXO and soil. New algorithms aimed at utilizing the high quality data from the GEM-3D+ was developed including the Generalized Standardized Excitations Approach (GSEA) and Normalized Surface Magnetic Source (NSMS). Results from this project suggest a further need for high quality, production instruments in the frequency domain suited to UXO remediation efforts.

[1]  C. Ao Electromagnetic wave scattering by discrete random media with remote sensing applications , 2001 .

[2]  Keli Sun,et al.  Simulation of electromagnetic induction scattering from targets with negligible to moderate penetration by primary fields , 2002, IEEE Trans. Geosci. Remote. Sens..

[3]  P. Hansen Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .

[4]  Douglas W. Oldenburg,et al.  Recovering magnetic susceptibility from electromagnetic data over a one-dimensional earth , 1997 .

[5]  Kevin O'Neill,et al.  Analysis of geological soil effects on EMI responses relevant to UXO discrimination , 2005, SPIE Defense + Commercial Sensing.

[6]  Leslie M. Collins,et al.  Sensing of unexploded ordnance with magnetometer and induction data: theory and signal processing , 2003, IEEE Trans. Geosci. Remote. Sens..

[7]  J. Wait Electromagnetic wave theory , 1985 .

[8]  J. Kong,et al.  Scattering of Electromagnetic Waves: Theories and Applications , 2000 .

[9]  Juan Pablo Fernández,et al.  Combined Nsmc And Pseudo-Spectral Finite-Difference Method For Inverting A Buried Object Location , 2007 .

[10]  Leonard R. Pasion,et al.  Inversion of frequency domain data collected in a magnetic setting for the detection of UXO , 2008, SPIE Defense + Commercial Sensing.

[11]  Irma Shamatava,et al.  Treatment of a permeable non-conducting medium with the EMI-BOR program , 2005, SPIE Defense + Commercial Sensing.

[12]  Irma Shamatava,et al.  Theoretical analysis and range of validity of TSA formulation for application to UXO discrimination , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Amos Gilat,et al.  Numerical Methods with MATLAB , 2007 .

[14]  Jin Au Kong,et al.  Quasi-magnetostatic solution for a conducting and permeable spheroid with arbitrary excitation , 2002, IEEE Trans. Geosci. Remote. Sens..

[15]  Leonard R. Pasion,et al.  EVALUATING THE EFFECTIVENESS OF VARYING TRANSMITTER WAVEFORMS FOR UXO DETECTION IN MAGNETIC SOIL ENVIRONMENTS , 2005 .

[16]  Irma Shamatava,et al.  Evaluation of approximate analytical solutions for EMI scattering from finite objects of different shapes and properties , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[17]  D. Oldenburg,et al.  A Discrimination Algorithm for UXO Using Time Domain Electromagnetics , 2001 .

[18]  Jin Au Kong,et al.  Broadband analytical magnetoquasistatic electromagnetic induction solution for a conducting and permeable spheroid , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Jin Au Kong,et al.  Use of EMI response coefficients from spheroidal excitation and scattering modes to classify objects via SVM , 2006, SPIE Defense + Commercial Sensing.

[20]  Jin Au Kong,et al.  Magnetoquasistatic response of conducting and permeable prolate spheroid under axial excitation , 2001, IEEE Trans. Geosci. Remote. Sens..

[21]  Thomas H. Bell,et al.  Simple phenomenological models for wideband frequency-domain electromagnetic induction , 2001, IEEE Trans. Geosci. Remote. Sens..

[22]  M. Andreasen Scattering from bodies of revolution , 1965 .

[23]  Douglas C. Fraser Magnetite mapping with a multicoil airborne electromagnetic system , 1981 .

[24]  Benjamin E. Barrowes,et al.  Electromagnetic scattering and induction models for spheroidal geometries , 2004 .

[25]  Y. Das,et al.  Analysis of an electromagnetic induction detector for real-time location of buried objects , 1990 .

[26]  Jr. R.A. Schill,et al.  General relation for the vector magnetic field of a circular current loop: a closer look , 2003 .

[27]  J. Foley,et al.  The influence of magnetic viscosity on electromagnetic sensors , 2003 .

[28]  Jonathan E. Nyquist,et al.  Simultaneous inversion of airborne electromagnetic data for resistivity and magnetic permeability , 1998 .

[29]  Lawrence Carin,et al.  Classification of Unexploded Ordnance Using Incomplete Multisensor Multiresolution Data , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Leonard R. Pasion,et al.  Application of a library based method to time domain electromagnetic data for the identification of unexploded ordnance , 2007 .

[31]  Jin Au Kong,et al.  Support Vector Machine and Neural Network Classification of Metallic Objects Using Coefficients of the Spheroidal MQS Response Modes , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Douglas W. Oldenburg,et al.  Simultaneous reconstruction of 1-D susceptibility and conductivity from electromagnetic data , 1999 .

[33]  M. De Graef,et al.  Demagnetization factors of the general ellipsoid: An alternative to the Maxwell approach , 2006 .

[34]  Haoping Huang,et al.  Airborne resistivity and susceptibility mapping in magnetically polarizable areas , 2000 .

[35]  Jin Au Kong,et al.  Electromagnetic Induction From Highly Permeable and Conductive Ellipsoids Under Arbitrary Excitation: Application to the Detection of Unexploded Ordnances , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Janet E. Simms,et al.  Classification of Magnetic Susceptibility Anomalies and Their Relevance to UXO Detection , 2007 .

[37]  D. F. Lawden Elliptic Functions and Applications , 1989 .

[38]  David E. Ferguson Fibonaccian searching , 1960, CACM.

[39]  J. P. Fernández,et al.  Dumbbell dipole model and its application in UXO discrimination , 2006, SPIE Defense + Commercial Sensing.

[40]  James R. Wait,et al.  Quasi-Static Transient Response of a Conducting Permeable Sphere , 1969 .

[41]  I. Shamatava,et al.  EMI obscuration of buried UXO by geophysical magnetic permeability, anthropogenic clutter, and by magnitude disparities , 2005, SPIE Defense + Commercial Sensing.

[42]  W. Macmillan,et al.  The theory of the potential , 1930 .

[43]  Jin Au Kong,et al.  Absolute Calibration of EMI Measurements and Application to Soil Magnetic Susceptibility Inference , 2008 .

[44]  Thomas H. Bell,et al.  Electromagnetic induction spectroscopy for clearing landmines , 2001, IEEE Trans. Geosci. Remote. Sens..

[45]  Irma Shamatava,et al.  Fast and accurate calculation of physically complete EMI response by a heterogeneous metallic object , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[46]  Leonard R. Pasion,et al.  Soil compensation techniques for the detection of buried metallic objects using electromagnetic sensors , 2007, SPIE Defense + Commercial Sensing.

[47]  Jean-Luc Boiffier Dynamics of flight : the equations , 1998 .

[48]  Kenneth A. Fegley,et al.  Orthogonalization Techniques of a Direction Cosine Matrix , 1969, IEEE Transactions on Aerospace and Electronic Systems.

[49]  Jan M. H. Hendrickx,et al.  Variability of magnetic soil properties in Hawaii , 2005, SPIE Defense + Commercial Sensing.

[50]  Jin Au Kong,et al.  Spheroidal Mode Approach for the Characterization of Metallic Objects Using Electromagnetic Induction , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[51]  Juan Pablo Fernández,et al.  The generalized SEA and a statistical signal processing approach applied to UXO discrimination , 2008, SPIE Defense + Commercial Sensing.

[52]  Leslie M. Collins,et al.  A statistical approach to landmine detection using broadband electromagnetic induction data , 2002, IEEE Trans. Geosci. Remote. Sens..

[53]  John Allan,et al.  Geonics EM63 Multichannel EM Data Processing Algorithms for Target Location and Ordnance Discrimination , 2003 .

[54]  Keli Sun,et al.  Application of the method of auxiliary sources to the wide-band electromagnetic induction problem , 2002, IEEE Trans. Geosci. Remote. Sens..

[55]  Xudong Chen Inverse problems in electromagnetics , 2005 .

[56]  Yacine Dalichaouch,et al.  On the wideband EMI response of a rotationally symmetric permeable and conducting target , 2001, IEEE Trans. Geosci. Remote. Sens..

[57]  Leonard R. Pasion,et al.  Investigating the effects of soils with complex magnetic susceptibility on EMI measurements using numerical modelling of Maxwell's equations , 2009, Defense + Commercial Sensing.

[58]  Leslie M. Collins,et al.  Classification of landmine-like metal targets using wideband electromagnetic induction , 2000, IEEE Trans. Geosci. Remote. Sens..

[59]  Lawrence Carin,et al.  Detection of buried targets via active selection of labeled data: application to sensing subsurface UXO , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[60]  Irma Shamatava,et al.  Accounting for the effects of widespread discrete clutter in subsurface EMI remote sensing of metallic objects , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[61]  Leonard R. Pasion,et al.  Evaluating the Effects of Magnetic Susceptibility in UXO Discrimination Problems (SERDP SEED Project UX-1285) , 2003 .

[62]  Clifford H. Thurber,et al.  Parameter estimation and inverse problems , 2005 .

[63]  Kevin O'Neill,et al.  Analyzing multi-axis data versus scalar data for UXO discrimination , 2005, SPIE Defense + Commercial Sensing.

[64]  Stephen J. Norton,et al.  Identification of buried unexploded ordnance from broadband electromagnetic induction data , 2001, IEEE Trans. Geosci. Remote. Sens..

[65]  J. P. Fernández,et al.  Application of the normalized surface magnetic charge model to UXO discrimination in cases with overlapping signals , 2007 .

[66]  Juan Pablo Fernández,et al.  A data-derived time-domain SEA for UXO identification using the MPV sensor , 2008, SPIE Defense + Commercial Sensing.

[67]  James R. Wait,et al.  A conducting sphere in a time varying magnetic field , 1951 .

[68]  Remke L. van Dam,et al.  Spatial variability of magnetic soil properties , 2004, SPIE Defense + Commercial Sensing.

[69]  Thomas H. Bell,et al.  Subsurface discrimination using electromagnetic induction sensors , 2001, IEEE Trans. Geosci. Remote. Sens..

[70]  Sean E. Walker EXAMPLES OF THE EFFECT OF MAGNETIC SOIL ENVIRONMENTS ON TIME DOMAIN ELECTROMAGNETIC DATA , 2005 .

[71]  Walter L. Anderson,et al.  Algorithm 588: Fast Hankel Transforms Using Related and Lagged Convolutions , 1982, TOMS.

[72]  Tomasz M. Grzegorczyk,et al.  Modeling Highly Permeable and Conductive Ellipsoidal Clutter for the Detection of UXO in the Electromagnetic Induction Regime , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[73]  Gregory A. Newman,et al.  Transient electromagnetic response of a three-dimensional body in a layered earth , 1986 .

[74]  Irma Shamatava,et al.  Fast data-derived fundamental spheroidal excitation models with application to UXO discrimination , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[75]  G. Arfken Mathematical Methods for Physicists , 1967 .

[76]  Carl E. Baum,et al.  On the low-frequency natural response of conducting and permeable targets , 1999, IEEE Trans. Geosci. Remote. Sens..

[77]  I. J. Won,et al.  Characterization of UXO-like targets using broadband electromagnetic induction sensors , 2003, IEEE Trans. Geosci. Remote. Sens..

[78]  Henning Braunisch,et al.  Methods in wave propagation and scattering , 2001 .

[79]  E. Hobson The Theory of Spherical and Ellipsoidal Harmonics , 1955 .

[80]  Irma Shamatava,et al.  Data-derived SEA for Time Domain EMI Sensing of UXO , 2007 .

[81]  G. Temple Static and Dynamic Electricity , 1940, Nature.

[82]  I. J. Won,et al.  GEM‐3: A Monostatic Broadband Electromagnetic Induction Sensor , 1997 .

[83]  Waymond R. Scott,et al.  Adaptive Multimodality Sensing of Landmines , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[84]  Eric L. Miller,et al.  Subsurface Sensing Under Sensor Positional Uncertainty , 2007, IEEE Transactions on Geoscience and Remote Sensing.