Affine invariant comparison of point-sets using convex hulls and hausdorff distances

Many object recognition or identification applications involve comparing features associated with point-sets. This paper presents an affine invariant point-set matching technique which measures the similarity between two point-sets by embedding them into an affine invariant feature space. The developed technique assumes no a priori knowledge of reference points, as is the case in many identification problems. Reference points of a point-set are obtained based on its convex hull. An enhanced version of the Modified Hausdorff Distance is also introduced and used in the feature space for comparing two point-sets. It should be noted that the technique does not attempt to obtain correspondences between the point-sets. The introduced technique is applied to two real databases and its performance is found favorable as compared to three other affine invariant matching techniques.

[1]  Zhengyou Zhang,et al.  Iterative point matching for registration of free-form curves and surfaces , 1994, International Journal of Computer Vision.

[2]  Fionn Murtagh,et al.  A New Approach to Point Pattern Matching , 1992 .

[3]  Thomas H. Reiss,et al.  The revised Fundamental Theorem of Moment Invariants , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Majid Ahmadi,et al.  Affine point pattern matching and its application to form registration , 1996, 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96.

[5]  George C. Stockman,et al.  Object recognition and localization via pose clustering , 1987, Comput. Vis. Graph. Image Process..

[6]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[7]  A. Ardeshir Goshtasby,et al.  Point pattern matching using convex hull edges , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[8]  H. Coxeter,et al.  Introduction to Geometry. , 1961 .

[9]  Nasser Kehtarnavaz,et al.  An affine invariant curve matching method for photo-identification of marine mammals , 2005, Pattern Recognit..

[10]  Wesley E. Snyder,et al.  Application of Affine-Invariant Fourier Descriptors to Recognition of 3-D Objects , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  N. Kehtarnavaz,et al.  A String Matching Computer-Assisted System for Dolphin Photoidentification , 2004, Annals of Biomedical Engineering.

[12]  Haim J. Wolfson,et al.  Geometric hashing: an overview , 1997 .

[13]  Edwin R. Hancock,et al.  A unified framework for alignment and correspondence , 2003, Comput. Vis. Image Underst..

[14]  Herbert Süße,et al.  Affine Point Pattern Matching , 2001, DAGM-Symposium.

[15]  M.P. Yu,et al.  Object recognition by combining viewpoint invariant Fourier descriptor and convex hull , 2001, Proceedings of 2001 International Symposium on Intelligent Multimedia, Video and Speech Processing. ISIMP 2001 (IEEE Cat. No.01EX489).

[16]  Akira Tomono,et al.  Affine-Invariant Recognition of Gray-Scale Characters Using Global Affine Transformation Correlation , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Janne Heikkilä,et al.  Pattern matching with affine moment descriptors , 2004, Pattern Recognit..

[18]  Daniel P. Huttenlocher,et al.  Fast affine point matching: an output-sensitive method , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[19]  Helmut Alt,et al.  Measuring the resemblance of polygonal curves , 1992, SCG '92.

[20]  Peter F. Stiller General approaches to recognizing geometric configurations from a single view , 1997, Optics & Photonics.

[21]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[22]  S. Umeyama,et al.  Least-Squares Estimation of Transformation Parameters Between Two Point Patterns , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Herbert Süße,et al.  Robust matching of affinely transformed objects , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[24]  Shimon Ullman,et al.  Recognizing solid objects by alignment with an image , 1990, International Journal of Computer Vision.

[25]  Michael Werman,et al.  Affine point matching , 1994, Pattern Recognit. Lett..

[26]  Zhengwei Yang,et al.  Image registration and object recognition using affine invariants and convex hulls , 1999, IEEE Trans. Image Process..

[27]  Anil K. Jain,et al.  A modified Hausdorff distance for object matching , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[28]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Hanan Samet,et al.  Using spatial sorting and ranking in model-based object recognition , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[30]  Jan Flusser,et al.  Affine moment invariants: a new tool for character recognition , 1994, Pattern Recognit. Lett..

[31]  Zhengwei Yang,et al.  Cross-Weighted Moments and Affine Invariants for Image Registration and Matching , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  William Rucklidge,et al.  Efficiently Locating Objects Using the Hausdorff Distance , 1997, International Journal of Computer Vision.

[33]  Robert M. Haralick,et al.  Optimal affine-invariant point matching , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[34]  Yehezkel Lamdan,et al.  Affine invariant model-based object recognition , 1990, IEEE Trans. Robotics Autom..

[35]  Remco C. Veltkamp,et al.  Reliable and Efficient Pattern Matching Using an Affine Invariant Metric , 1999, International Journal of Computer Vision.

[36]  Nasser Kehtarnavaz,et al.  Photo-Identification of Humpback and Gray Whales using Affine Moment Invariants , 2003, SCIA.

[37]  Fang-Hsuan Cheng,et al.  Fast algorithm for point pattern matching: Invariant to translations, rotations and scale changes , 1997, Pattern Recognit..