CMOS rectifier for wireless power transmission using multiplier configuration

We present a rectifier for wireless power transmission using multiplier configuration in layout for MOSFETs which works at 13.56 MHz, designed to fit in CMOS process where conventionally used diodes are replaced with the cross-coupled MOSFETs. Full bridge rectifier structure without comparators is employed to reduce current consumption and to be working up to higher frequency. Multiplier configuration designed in layout reduces time delay originated from parasitic series resistance and shunt capacitance at each finger due to long connecting layout, leading to fast transition from on state to off state of cross-coupled circuit structure and vice versa. The power conversion efficiency is significantly increased due to this fast transition time. The rectifier is fabricated in 0.11μm CMOS process, RF to DC power conversion efficiency is measured as 86.4% at the peak, and this good efficiency is maintained up to 600 MHz, which is, to our best knowledge, the highest frequency based on cross-coupled configuration.

[1]  Chi-Ying Tsui,et al.  Integrated Low-Loss CMOS Active Rectifier for Wirelessly Powered Devices , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[2]  Maysam Ghovanloo,et al.  An Integrated Power-Efficient Active Rectifier With Offset-Controlled High Speed Comparators for Inductively Powered Applications , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[3]  Hyouk-Kyu Cha,et al.  A CMOS Rectifier With a Cross-Coupled Latched Comparator for Wireless Power Transfer in Biomedical Applications , 2012, IEEE Transactions on Circuits and Systems II: Express Briefs.

[4]  Chi-Ying Tsui,et al.  A 13.56MHz fully integrated 1X/2X active rectifier with compensated bias current for inductively powered devices , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[5]  Sang-Gug Lee,et al.  A Low-Parasitic and Common-Centroid Cross-Coupled CMOS Transistor Structure for High-Frequency VCO Design , 2009, IEEE Electron Device Letters.