First on-line application of the high-resolution spectroscopy laser ion source PI-LIST at ISOLDE

[1]  D. Studer,et al.  Nuclear moments and isotope shifts of the actinide isotopes Cf249253, 2023, Physical Review C.

[2]  T. Stora,et al.  Resonant laser ionization and mass separation of 225Ac , 2023, Scientific Reports.

[3]  R. Ruiz,et al.  Laser spectroscopy for the study of exotic nuclei , 2022, Progress in Particle and Nuclear Physics.

[4]  B. Marsh,et al.  Efficient Production of High Specific Activity Thulium-167 at Paul Scherrer Institute and CERN-MEDICIS , 2021, Frontiers in Medicine.

[5]  K. Wendt,et al.  Hyperfine structure study of Tc97,98,99 in a new laser ion source for high-resolution laser spectroscopy , 2020 .

[6]  S. Braccini,et al.  High-resolution laser resonance ionization spectroscopy of $$^{143-147}$$143-147Pm , 2020, The European physical journal. A, Hadrons and nuclei.

[7]  B. Marsh,et al.  Atom beam emersion from hot cavity laser ion sources , 2020 .

[8]  V. Fedosseev,et al.  First demonstration of Doppler-free 2-photon in-source laser spectroscopy at the ISOLDE-RILIS , 2020 .

[9]  F. Ames,et al.  Search for octupole-deformed actinium isotopes using resonance ionization spectroscopy , 2019, Physical Review C.

[10]  K. Wendt,et al.  Highly efficient isotope separation and ion implantation of  163Ho for the ECHo project , 2019, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[11]  V. Manea,et al.  Characterization of the shape-staggering effect in mercury nuclei , 2018, Nature Physics.

[12]  Xiaofei Yang,et al.  Precision Laser Spectroscopy Technique for Exotic Radioactive Beams at CERN-ISOLDE , 2018 .

[13]  K. Wendt,et al.  Characterization of a pulsed injection-locked Ti:sapphire laser and its application to high resolution resonance ionization spectroscopy of copper , 2017 .

[14]  T. Stora,et al.  The ISOLDE facility , 2017 .

[15]  Klaus Wendt,et al.  IOP : Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE , 2017 .

[16]  G. Neyens,et al.  Efficient, high-resolution resonance laser ionization spectroscopy using weak transitions to long-lived excited states , 2017, 1704.03875.

[17]  J. Piot,et al.  Towards high-resolution laser ionization spectroscopy of the heaviest elements in supersonic gas jet expansion , 2017, Nature Communications.

[18]  Klaus Wendt,et al.  High-resolution in-source laser spectroscopy in perpendicular geometry , 2017 .

[19]  Y. Liu,et al.  High efficiency resonance ionization of palladium with Ti:sapphire lasers , 2016 .

[20]  B. Marsh,et al.  Advances in surface ion suppression from RILIS: Towards the Time-of-Flight Laser Ion Source (ToF-LIS) , 2016 .

[21]  A. Gottberg,et al.  In-source laser spectroscopy with the Laser Ion Source and Trap: first direct study of the ground-state properties of 217,219Po , 2015 .

[22]  A. Gottberg,et al.  On-line implementation and first operation of the Laser Ion Source and Trap at ISOLDE/CERN , 2015 .

[23]  A. Gottberg,et al.  First application of the Laser Ion Source and Trap (LIST) for on-line experiments at ISOLDE , 2013 .

[24]  V. N. Fedosseev,et al.  A complementary laser system for ISOLDE RILIS , 2011 .

[25]  A. Malinovsky,et al.  Resonant Ionization Laser Ion Source (RILIS) With Improved Selectivity Achieved By Ion Pulse Compression Using In‐Source Time‐of‐flight Technique , 2009 .

[26]  G. Gwinner,et al.  Standard model tests with trapped radioactive atoms , 2008, 0810.3942.