Optimization algorithms on Riemannian manifolds with applications

This dissertation generalizes three well-known unconstrained optimization approaches for Rn to solve optimization problems with constraints that can be viewed as a d-dimensional Riemannian manifold to obtain the Riemannian Broyden family of methods, the Riemannian symmetric rankone trust region method, and Riemannian gradient sampling method. The generalization relies on basic differential geometric concepts, such as tangent spaces, Riemannian metrics, and the Riemannian gradient, as well as on the more recent notions of (first-order) retraction and vector transport. The effectiveness of the methods and techniques for their efficient implementation are derived and evaluated. Basic experiments and applications are used to illustrate the value of the proposed methods. Both the Riemannian symmetric rank-one trust region method and the RBroyden family of methods are generalized from Euclidean quasi-Newton optimization methods, in which a Hessian approximation exploits the well-known secant condition. The generalization of the secant condition and the associated update formulas that define quasi-Newton methods to the Riemannian setting is a key result of this dissertation. The dissertation also contains convergence theory for these methods. The Riemannian symmetric rank-one trust region method is shown to converge globally to a stationary point and d+1-step q-superlinearly to a minimizer of the objective function. The RBroyden family of methods is shown to converge globally and q-superlinearly to a minimizer of a retraction-convex objective function. A condition, called the locking condition, on vector transport and retraction that guarantees convergence for the RBroyden family method and facilitates efficient computation is derived and analyzed. The Dennis Moré sufficient and necessary conditions for superlinear convergence, can be generalized to the Riemannian setting in multiple ways. This dissertation generalizes them in a novel manner that is applicable to both Riemannian optimization problems and root finding for a vector field on a Riemannian manifold. The convergence analyses of Riemannian symmetric rank-one trust region method and RBroyden family methods assume a smooth objective function. For partly smooth Lipschitz continuous objective functions, a variation of one of the RBroyden family methods, RBFGS, is shown to be work well empirically. In addition, the Riemannian gradient sampling method is shown to work

[1]  Y. Wong,et al.  Differentiable Manifolds , 2009 .

[2]  Chandler Davis The rotation of eigenvectors by a perturbation , 1963 .

[3]  D. Luenberger The Gradient Projection Method Along Geodesics , 1972 .

[4]  J. J. Moré,et al.  A Characterization of Superlinear Convergence and its Application to Quasi-Newton Methods , 1973 .

[5]  E. Polak Introduction to linear and nonlinear programming , 1973 .

[6]  D. Varberg,et al.  Another Proof that Convex Functions are Locally Lipschitz , 1974 .

[7]  J. J. Moré,et al.  Quasi-Newton Methods, Motivation and Theory , 1974 .

[8]  Josef Stoer On the convergence rate of imperfect minimization algorithms in Broyden'sβ-class , 1975, Math. Program..

[9]  William C. Davidon,et al.  Optimally conditioned optimization algorithms without line searches , 1975, Math. Program..

[10]  Bobby Schnabel,et al.  Optimal conditioning in the convex class of rank two updates , 1978, Math. Program..

[11]  K. Ritter Global and superlinear convergence of a class of variable metric methods , 1979 .

[12]  D. Bertsekas Projected Newton methods for optimization problems with simple constraints , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[13]  P. Toint,et al.  Local convergence analysis for partitioned quasi-Newton updates , 1982 .

[14]  D. Gabay Minimizing a differentiable function over a differential manifold , 1982 .

[15]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[16]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[17]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[18]  K. Kiwiel Methods of Descent for Nondifferentiable Optimization , 1985 .

[19]  M. J. D. Powell,et al.  How bad are the BFGS and DFP methods when the objective function is quadratic? , 1986, Math. Program..

[20]  J. Nocedal,et al.  Global Convergence of a Class of Quasi-newton Methods on Convex Problems, Siam Some Global Convergence Properties of a Variable Metric Algorithm for Minimization without Exact Line Searches, Nonlinear Programming, Edited , 1996 .

[21]  R. Tewarson,et al.  Quasi-Newton Algorithms with Updates from the Preconvex Part of Broyden's Family , 1988 .

[22]  G. Sell,et al.  Inertial manifolds for nonlinear evolutionary equations , 1988 .

[23]  Roger Temam,et al.  On the nonlinear Galerkin methods , 1989 .

[24]  I. Kevrekidis,et al.  Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations , 1990 .

[25]  Nicholas I. M. Gould,et al.  Convergence of quasi-Newton matrices generated by the symmetric rank one update , 1991, Math. Program..

[26]  Jorge Nocedal,et al.  On the Behavior of Broyden's Class of Quasi-Newton Methods , 1992, SIAM J. Optim..

[27]  Richard H. Byrd,et al.  A Theoretical and Experimental Study of the Symmetric Rank-One Update , 1993, SIAM J. Optim..

[28]  Jorge Nocedal,et al.  Representations of quasi-Newton matrices and their use in limited memory methods , 1994, Math. Program..

[29]  I. Chavel Riemannian Geometry: Subject Index , 2006 .

[30]  Timothy F. Havel,et al.  Derivatives of the Matrix Exponential and Their Computation , 1995 .

[31]  Richard H. Byrd,et al.  Analysis of a Symmetric Rank-One Trust Region Method , 1996, SIAM J. Optim..

[32]  U. Helmke,et al.  Optimization and Dynamical Systems , 1994, Proceedings of the IEEE.

[33]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[34]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[35]  Timo Eirola,et al.  On Smooth Decompositions of Matrices , 1999, SIAM J. Matrix Anal. Appl..

[36]  David S. Broomhead,et al.  A New Approach to Dimensionality Reduction: Theory and Algorithms , 2000, SIAM J. Appl. Math..

[37]  Jing-Rebecca Li Model reduction of large linear systems via low rank system gramians , 2000 .

[38]  Ionel M. Navon,et al.  Use of differentiable and nondifferentiable optimization algorithms for variational data assimilation with discontinuous cost functions , 2000 .

[39]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[40]  R. Adler,et al.  Newton's method on Riemannian manifolds and a geometric model for the human spine , 2002 .

[41]  Philip N. Klein,et al.  On Aligning Curves , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Michal Rewienski,et al.  A trajectory piecewise-linear approach to model order reduction of nonlinear dynamical systems , 2003 .

[43]  张振跃,et al.  Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment , 2004 .

[44]  Alan J. Laub,et al.  Matrix analysis - for scientists and engineers , 2004 .

[45]  Marjo S. Haarala Large-scale nonsmooth optimization : variable metric bundle method with limited memory , 2004 .

[46]  Adrian S. Lewis,et al.  A Robust Gradient Sampling Algorithm for Nonsmooth, Nonconvex Optimization , 2005, SIAM J. Optim..

[47]  Li Qiu,et al.  Unitarily Invariant Metrics on the Grassmann Space , 2005, SIAM J. Matrix Anal. Appl..

[48]  D. Broomhead,et al.  Dimensionality Reduction Using Secant-Based Projection Methods: The Induced Dynamics in Projected Systems , 2005 .

[49]  Klaus Ritter Local and superlinear convergence of a class of variable metric methods , 2005, Computing.

[50]  J. Manton,et al.  An improved BFGS-on-manifold algorithm for computing weighted low rank approximations , 2006 .

[51]  Pierre-Antoine Absil,et al.  Joint Diagonalization on the Oblique Manifold for Independent Component Analysis , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[52]  Yuxuan Wang,et al.  A Leaf Recognition Algorithm for Plant Classification Using Probabilistic Neural Network , 2007, 2007 IEEE International Symposium on Signal Processing and Information Technology.

[53]  Michel Verleysen,et al.  Nonlinear Dimensionality Reduction , 2021, Computer Vision.

[54]  Chuanhai Liu,et al.  Statistical Quasi-Newton: A New Look at Least Change , 2007, SIAM J. Optim..

[55]  Pierre-Antoine Absil,et al.  Trust-Region Methods on Riemannian Manifolds , 2007, Found. Comput. Math..

[56]  N. Schraudolph,et al.  A quasi-Newton approach to non-smooth convex optimization , 2008, ICML '08.

[57]  Paulo Tabuada,et al.  Approximate reduction of dynamic systems , 2008, Syst. Control. Lett..

[58]  C. Baker RIEMANNIAN MANIFOLD TRUST-REGION METHODS WITH APPLICATIONS TO EIGENPROBLEMS , 2008 .

[59]  P. Absil,et al.  An implicit trust-region method on Riemannian manifolds , 2008 .

[60]  Fabian J. Theis,et al.  Soft Dimension Reduction for ICA by Joint Diagonalization on the Stiefel Manifold , 2009, ICA.

[61]  Oliver Sander,et al.  Geodesic finite elements for Cosserat rods , 2009 .

[62]  Levent Tunçel,et al.  Optimization algorithms on matrix manifolds , 2009, Math. Comput..

[63]  Francis R. Bach,et al.  Low-Rank Optimization on the Cone of Positive Semidefinite Matrices , 2008, SIAM J. Optim..

[64]  Pierre-Antoine Absil,et al.  Riemannian BFGS Algorithm with Applications , 2010 .

[65]  Stefan Vandewalle,et al.  A Riemannian Optimization Approach for Computing Low-Rank Solutions of Lyapunov Equations , 2010, SIAM J. Matrix Anal. Appl..

[66]  Berkant Savas,et al.  Quasi-Newton Methods on Grassmannians and Multilinear Approximations of Tensors , 2009, SIAM J. Sci. Comput..

[67]  Pierre-Antoine Absil,et al.  Oriented Bounding Box Computation Using Particle Swarm Optimization , 2010, ESANN.

[68]  Rama Chellappa,et al.  Statistical Computations on Grassmann and Stiefel Manifolds for Image and Video-Based Recognition , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[69]  Chunhong Qi Numerical Optimization Methods on Riemannian Manifolds , 2011 .

[70]  Anuj Srivastava,et al.  Shape Analysis of Elastic Curves in Euclidean Spaces , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[71]  Pierre-Antoine Absil,et al.  RTRMC: A Riemannian trust-region method for low-rank matrix completion , 2011, NIPS.

[72]  Sabine Van Huffel,et al.  Best Low Multilinear Rank Approximation of Higher-Order Tensors, Based on the Riemannian Trust-Region Scheme , 2011, SIAM J. Matrix Anal. Appl..

[73]  Bamdev Mishra,et al.  Low-rank optimization for distance matrix completion , 2011, IEEE Conference on Decision and Control and European Control Conference.

[74]  Daniel T. Robinson,et al.  Functional data analysis and partial shape matching in the square root velocity framework , 2012 .

[75]  K. Hüper,et al.  Properties of the BFGS method on Riemannian manifolds , 2012 .

[76]  Benedikt Wirth,et al.  Optimization Methods on Riemannian Manifolds and Their Application to Shape Space , 2012, SIAM J. Optim..

[77]  Ruediger Borsdorf Structured Matrix Nearness Problems:Theory and Algorithms , 2012 .

[78]  Olgica Milenkovic,et al.  A Geometric Approach to Low-Rank Matrix Completion , 2010, IEEE Transactions on Information Theory.

[79]  Vincent D. Blondel,et al.  Cramér-Rao bounds for synchronization of rotations , 2012, ArXiv.

[80]  Seungjin Choi,et al.  Independent Component Analysis , 2009, Handbook of Natural Computing.

[81]  Bruno Alfano,et al.  Descent Algorithms on Oblique Manifold for Source-Adaptive ICA Contrast , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[82]  Hao Shen,et al.  Blind Source Separation With Compressively Sensed Linear Mixtures , 2011, IEEE Signal Processing Letters.

[83]  Pierre-Antoine Absil,et al.  A Riemannian Dennis-Moré Condition , 2012, High-Performance Scientific Computing.

[84]  Bart Vandereycken Low-Rank Matrix Completion by Riemannian Optimization , 2012, SIAM J. Optim..

[85]  René Vidal,et al.  On the Convergence of Gradient Descent for Finding the Riemannian Center of Mass , 2011, SIAM J. Control. Optim..

[86]  A. Lewis,et al.  Nonsmooth optimization via quasi-Newton methods , 2012, Mathematical programming.

[87]  Dario Bini,et al.  Computing the Karcher mean of symmetric positive definite matrices , 2013 .

[88]  Bamdev Mishra,et al.  Low-Rank Optimization with Trace Norm Penalty , 2011, SIAM J. Optim..

[89]  Wotao Yin,et al.  A feasible method for optimization with orthogonality constraints , 2013, Math. Program..

[90]  Wen Huang,et al.  A Riemannian symmetric rank-one trust-region method , 2014, Mathematical Programming.

[91]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .