Distributed data and ontologies: An integrated semantic web architecture enabling more efficient data management

Regulatory reporting across multiple jurisdictions is a significant cost for financial services organizations, due to a lack of systems integration (often with legacy systems) and no agreed industry data standards. This article describes the design and development of a novel ontology‐based framework to illustrate how ontologies can interface with distributed data sources. The framework is then tested using a survey instrument and an integrated research model of user satisfaction and technology acceptance. A description is provided of extensions to an industry standard ontology, specifically the Financial Industry Business Ontology (FIBO), towards enabling greater data interchange. Our results reveal a significant reduction in manual processes, increase in data quality, and improved data aggregation by employing the framework. The research model reveals the range of factors that drive acceptance of the framework. Additional interview evidence reveals that the ontological framework also allows organizations to react to regulatory changes with much‐improved timeframes and provides opportunities to test for data quality.

[1]  Asunción Gómez-Pérez,et al.  Ontological Engineering: With Examples from the Areas of Knowledge Management, e-Commerce and the Semantic Web , 2004, Advanced Information and Knowledge Processing.

[2]  Suhaimi Ibrahim,et al.  A Software Redocumentation Process Using Ontology Based Approach in Software Maintenance , 2011 .

[3]  Michael Zakharyaschev,et al.  Ontology-Based Data Access with Databases: A Short Course , 2013, Reasoning Web.

[4]  Mansur R. Kabuka,et al.  Ontology matching with semantic verification , 2009, J. Web Semant..

[5]  Yang Zhang,et al.  I-TASSER: a unified platform for automated protein structure and function prediction , 2010, Nature Protocols.

[6]  Monica J. Garfield,et al.  The Adoption and Use of GSS in Project Teams: Toward More Participative Processes and Outcomes , 2003, MIS Q..

[7]  Lukas Furst,et al.  Multivariate Data Analysis With Readings , 2016 .

[8]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[9]  Diego Calvanese,et al.  Ontop: Answering SPARQL queries over relational databases , 2016, Semantic Web.

[10]  Huaiqing Wang,et al.  Ontologies for crisis contagion management in financial institutions , 2009, J. Inf. Sci..

[11]  Michael Zakharyaschev,et al.  Ontology-Based Data Access: Ontop of Databases , 2013, SEMWEB.

[12]  Constantin Marian Matei Modernization Solution for Legacy Banking System Using an Open Architecture , 2012 .

[13]  Roger H. L. Chiang,et al.  Big Data Research in Information Systems: Toward an Inclusive Research Agenda , 2016, J. Assoc. Inf. Syst..

[14]  Elie Sanchez,et al.  Object-fuzzy concept network: An enrichment of ontologies in semantic information retrieval , 2008, J. Assoc. Inf. Sci. Technol..

[15]  Santiago Comella-Dorda,et al.  A Survey of Legacy System Modernization Approaches , 2000 .

[16]  Peter G. Neumann Inside risks: robust open-source software , 1999, CACM.

[17]  Chelsea Hicks,et al.  An Ontological Approach to Misinformation: Quickly Finding Relevant Information , 2017, HICSS.

[18]  Miguel Ángel Rodríguez-García,et al.  Using Data Crawlers and Semantic Web to Build Financial XBRL Data Generators: The SONAR Extension Approach , 2014, TheScientificWorldJournal.

[19]  Mike Bennett,et al.  The financial industry business ontology: Best practice for big data , 2013, Journal of Banking Regulation.

[20]  Mohannad Najjar,et al.  Building ontological relationships: A new approach , 2008, J. Assoc. Inf. Sci. Technol..

[21]  C. Fornell,et al.  Evaluating structural equation models with unobservable variables and measurement error. , 1981 .

[22]  Viswanath Venkatesh,et al.  Bridging the Qualitative-Quantitative Divide: Guidelines for Conducting Mixed Methods Research in Information Systems , 2013, MIS Q..

[23]  Goutam Kumar Saha Web ontology language (OWL) and semantic web , 2007, UBIQ.

[24]  Stuart E. Madnick,et al.  Improving data quality through effective use of data semantics , 2006, Data Knowl. Eng..

[25]  Kshirasagar Naik,et al.  Legacy Information Systems , 2014 .

[26]  Hemant K. Jain,et al.  Success of Data Resource Management in Distributed Environments: An Empirical Investigation , 1998, MIS Q..

[27]  Ross P. Buckley,et al.  The Evolution of Fintech: A New Post-Crisis Paradigm? , 2015 .

[28]  A. Whyte,et al.  Dodd–Frank and risk in the financial services industry , 2016 .

[29]  Serge Demeyer,et al.  Redocumentation of a legacy banking system: an experience report , 2010, IWPSE-EVOL '10.

[30]  A. Haldane,et al.  Systemic risk, governance and global financial stability , 2014 .

[31]  Bart Baesens,et al.  Call for Papers MISQ Special Issue on Transformational Issues of Big Data and Analytics in Networked Business , 2014 .

[32]  Andreas Abecker,et al.  Ontologies and the Semantic Web , 2011, Handbook of Semantic Web Technologies.

[33]  Jens Lehmann,et al.  Introduction to Linked Data and Its Lifecycle on the Web , 2013, Reasoning Web.

[34]  Barbara H Wixom,et al.  A Theoretical Integration of User Satisfaction and Technology Acceptance , 2005, Inf. Syst. Res..

[35]  Bing Wu,et al.  Legacy Information Systems: Issues and Directions , 1999, IEEE Softw..

[36]  Rolph E. Anderson,et al.  Multivariate data analysis (4th ed.): with readings , 1995 .

[37]  Natalya F. Noy,et al.  Semantic integration: a survey of ontology-based approaches , 2004, SGMD.

[38]  Mauricio Barcellos Almeida,et al.  Revisiting ontologies: A necessary clarification , 2013, J. Assoc. Inf. Sci. Technol..

[39]  Hong-Mei Chen,et al.  Destination Information Systems: Design Issues and Directions , 1997, J. Manag. Inf. Syst..

[40]  Deborah L. McGuinness,et al.  OWL Web ontology language overview , 2004 .

[41]  R. Duane Ireland,et al.  Integrating entrepreneurship and strategic management actions to create firm wealth , 2001 .

[42]  Paul Benjamin Lowry,et al.  Partial Least Squares (PLS) Structural Equation Modeling (SEM) for Building and Testing Behavioral Causal Theory: When to Choose It and How to Use It , 2014, IEEE Transactions on Professional Communication.

[43]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[44]  Alasdair J. G. Gray,et al.  Enabling Ontology-Based Access to Streaming Data Sources , 2010, SEMWEB.

[45]  Diego Calvanese,et al.  Quest, an OWL 2 QL Reasoner for Ontology-based Data Access , 2012, OWLED.