The semi-parametric Bernstein-von Mises theorem for regression models with symmetric errors
暂无分享,去创建一个
[1] S. Ghosal,et al. Posterior Contraction Rates of Density Derivative Estimation , 2017, Sankhya A.
[2] D. Dunson,et al. Bayesian sparse linear regression with unknown symmetric error , 2016, Information and Inference: A Journal of the IMA.
[3] Minwoo Chae. The semiparametric Bernstein-von Mises theorem for models with symmetric error , 2015, 1510.05247.
[4] David B. Dunson,et al. Semiparametric Bernstein-von Mises Theorem: Second Order Studies , 2015, 1503.04493.
[5] D. Bates,et al. Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.
[6] A. V. D. Vaart,et al. BAYESIAN LINEAR REGRESSION WITH SPARSE PRIORS , 2014, 1403.0735.
[7] V. Spokoiny,et al. Finite Sample Bernstein -- von Mises Theorem for Semiparametric Problems , 2013, 1310.7796.
[8] B. Kleijn. Criteria for Bayesian consistency , 2013 .
[9] B. J. K. Kleijn,et al. Criteria for posterior consistency , 2013, 1308.1263.
[10] J. Rousseau,et al. A Bernstein–von Mises theorem for smooth functionals in semiparametric models , 2013, 1305.4482.
[11] V. Spokoiny. Bernstein - von Mises Theorem for growing parameter dimension , 2013, 1302.3430.
[12] I. Castillo. A semiparametric Bernstein–von Mises theorem for Gaussian process priors , 2012 .
[13] Dominique Bontemps,et al. Bernstein von Mises Theorems for Gaussian Regression with increasing number of regressors , 2010, 1009.1370.
[14] P. Bickel,et al. The semiparametric Bernstein-von Mises theorem , 2010, 1007.0179.
[15] George Casella,et al. Estimation in Dirichlet random effects models , 2010, 1002.4756.
[16] S. Boucheron,et al. A Bernstein-Von Mises Theorem for discrete probability distributions , 2008, 0807.2096.
[17] Annie Qu,et al. MAXIMUM LIKELIHOOD INFERENCE IN ROBUST LINEAR MIXED-EFFECTS MODELS USING MULTIVARIATE t DISTRIBUTIONS , 2007 .
[18] A. V. D. Vaart,et al. Posterior convergence rates of Dirichlet mixtures at smooth densities , 2007, 0708.1885.
[19] S. Walker,et al. On rates of convergence for posterior distributions in infinite-dimensional models , 2007, 0708.1892.
[20] A. V. D. Vaart,et al. Convergence rates of posterior distributions for non-i.i.d. observations , 2007, 0708.0491.
[21] Yongdai Kim. The Bernstein–von Mises theorem for the proportional hazard model , 2006, math/0611230.
[22] S. Walker. New approaches to Bayesian consistency , 2004, math/0503672.
[23] Yongdai Kim,et al. A Bernstein–von Mises theorem in the nonparametric right-censoring model , 2004, math/0410083.
[24] Alison L Gibbs,et al. On Choosing and Bounding Probability Metrics , 2002, math/0209021.
[25] Xiaotong Shen. Asymptotic Normality of Semiparametric and Nonparametric Posterior Distributions , 2002 .
[26] T. N. Sriram. Asymptotics in Statistics–Some Basic Concepts , 2002 .
[27] A. V. D. Vaart,et al. Entropies and rates of convergence for maximum likelihood and Bayes estimation for mixtures of normal densities , 2001 .
[28] Ying Nian Wu,et al. Efficient Algorithms for Robust Estimation in Linear Mixed-Effects Models Using the Multivariate t Distribution , 2001 .
[29] Jon A. Wellner,et al. Application of convolution theorems in semiparametric models with non-i.i.d. data , 2000 .
[30] D. Freedman. On the Bernstein-von Mises Theorem with Infinite Dimensional Parameters , 1999 .
[31] L. Wasserman,et al. The consistency of posterior distributions in nonparametric problems , 1999 .
[32] Subhashis Ghosal,et al. Asymptotic normality of posterior distributions in high-dimensional linear models , 1999 .
[33] J G Ibrahim,et al. A semiparametric Bayesian approach to the random effects model. , 1998, Biometrics.
[34] B. Everitt,et al. Analysis of longitudinal data , 1998, British Journal of Psychiatry.
[35] S. MacEachern,et al. A semiparametric Bayesian model for randomised block designs , 1996 .
[36] A. V. D. Vaart,et al. Efficient maximum likelihood estimation in semiparametric mixture models , 1996 .
[37] Jon A. Wellner,et al. Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .
[38] W. Wong,et al. Probability inequalities for likelihood ratios and convergence rates of sieve MLEs , 1995 .
[39] Adrian F. M. Smith,et al. Bayesian Analysis of Linear and Non‐Linear Population Models by Using the Gibbs Sampler , 1994 .
[40] D. Cox. An Analysis of Bayesian Inference for Nonparametric Regression , 1993 .
[41] M. West. On scale mixtures of normal distributions , 1987 .
[42] R. Hogg,et al. On adaptive estimation , 1984 .
[43] Albert Y. Lo,et al. On a Class of Bayesian Nonparametric Estimates: I. Density Estimates , 1984 .
[44] J. Ware,et al. Random-effects models for longitudinal data. , 1982, Biometrics.
[45] R. Beran. An Efficient and Robust Adaptive Estimator of Location , 1978 .
[46] C. R. Henderson,et al. Best linear unbiased estimation and prediction under a selection model. , 1975, Biometrics.
[47] C. J. Stone,et al. Adaptive Maximum Likelihood Estimators of a Location Parameter , 1975 .
[48] Jerome Sacks,et al. AN ASYMPTOTICALLY EFFICIENT SEQUENCE OF ESTIMATORS OF A LOCATION PARAMETER , 1975 .
[49] T. Ferguson. A Bayesian Analysis of Some Nonparametric Problems , 1973 .
[50] L. Schmetterer. Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete. , 1963 .
[51] Soumendu Sundar Mukherjee,et al. Weak convergence and empirical processes , 2019 .
[52] A. V. D. Vaart,et al. CONVERGENCE RATES OF POSTERIOR DISTRIBUTIONS FOR NONIID OBSERVATIONS By , 2018 .
[53] Van Der Vaart,et al. UvA-DARE ( Digital Academic Repository ) The Bernstein-Von-Mises theorem under misspecification , 2012 .
[54] I. Johnstone. High dimensional Bernstein-von Mises: simple examples. , 2010, Institute of Mathematical Statistics collections.
[55] Michael,et al. On a Class of Bayesian Nonparametric Estimates : I . Density Estimates , 2008 .
[56] P. Bickel,et al. SEMIPARAMETRIC INFERENCE AND MODELS , 2005 .
[57] Alice Richardson,et al. 13 Approaches to the robust estimation of mixed models , 1997 .
[58] Grace L. Yang,et al. On Bayes Procedures , 1990 .
[59] L. Lecam. Convergence of Estimates Under Dimensionality Restrictions , 1973 .
[60] Angus E. Taylor. General theory of functions and integration , 1965 .