The semi-parametric Bernstein-von Mises theorem for regression models with symmetric errors

In a smooth semi-parametric model, the marginal posterior distribution of a finite-dimensional parameter of interest is expected to be asymptotically equivalent to the sampling distribution of any efficient point estimator. This assertion leads to asymptotic equivalence of the credible and confidence sets of the parameter of interest, and is known as the semi-parametric Bernstein-von Mises theorem. In recent years, this theorem has received much attention and has been widely applied. Here, we consider models in which errors with symmetric densities play a role. Specifically, we show that the marginal posterior distributions of the regression coefficients in linear regression and linear mixed-effect models satisfy the semi-parametric Bernstein-von Mises assertion. As a result, Bayes estimators in these models achieve frequentist inferential optimality, as expressed, for example, in Hajek’s convolution and asymptotic minimax theorems. For the prior on the space of error densities, we provide two well-known examples, namely, the Dirichlet process mixture of normal densities and random series priors. The results provide efficient estimates of the regression coefficients in the linear mixed-effect model, for which no efficient point estimators currently exist.

[1]  S. Ghosal,et al.  Posterior Contraction Rates of Density Derivative Estimation , 2017, Sankhya A.

[2]  D. Dunson,et al.  Bayesian sparse linear regression with unknown symmetric error , 2016, Information and Inference: A Journal of the IMA.

[3]  Minwoo Chae The semiparametric Bernstein-von Mises theorem for models with symmetric error , 2015, 1510.05247.

[4]  David B. Dunson,et al.  Semiparametric Bernstein-von Mises Theorem: Second Order Studies , 2015, 1503.04493.

[5]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[6]  A. V. D. Vaart,et al.  BAYESIAN LINEAR REGRESSION WITH SPARSE PRIORS , 2014, 1403.0735.

[7]  V. Spokoiny,et al.  Finite Sample Bernstein -- von Mises Theorem for Semiparametric Problems , 2013, 1310.7796.

[8]  B. Kleijn Criteria for Bayesian consistency , 2013 .

[9]  B. J. K. Kleijn,et al.  Criteria for posterior consistency , 2013, 1308.1263.

[10]  J. Rousseau,et al.  A Bernstein–von Mises theorem for smooth functionals in semiparametric models , 2013, 1305.4482.

[11]  V. Spokoiny Bernstein - von Mises Theorem for growing parameter dimension , 2013, 1302.3430.

[12]  I. Castillo A semiparametric Bernstein–von Mises theorem for Gaussian process priors , 2012 .

[13]  Dominique Bontemps,et al.  Bernstein von Mises Theorems for Gaussian Regression with increasing number of regressors , 2010, 1009.1370.

[14]  P. Bickel,et al.  The semiparametric Bernstein-von Mises theorem , 2010, 1007.0179.

[15]  George Casella,et al.  Estimation in Dirichlet random effects models , 2010, 1002.4756.

[16]  S. Boucheron,et al.  A Bernstein-Von Mises Theorem for discrete probability distributions , 2008, 0807.2096.

[17]  Annie Qu,et al.  MAXIMUM LIKELIHOOD INFERENCE IN ROBUST LINEAR MIXED-EFFECTS MODELS USING MULTIVARIATE t DISTRIBUTIONS , 2007 .

[18]  A. V. D. Vaart,et al.  Posterior convergence rates of Dirichlet mixtures at smooth densities , 2007, 0708.1885.

[19]  S. Walker,et al.  On rates of convergence for posterior distributions in infinite-dimensional models , 2007, 0708.1892.

[20]  A. V. D. Vaart,et al.  Convergence rates of posterior distributions for non-i.i.d. observations , 2007, 0708.0491.

[21]  Yongdai Kim The Bernstein–von Mises theorem for the proportional hazard model , 2006, math/0611230.

[22]  S. Walker New approaches to Bayesian consistency , 2004, math/0503672.

[23]  Yongdai Kim,et al.  A Bernstein–von Mises theorem in the nonparametric right-censoring model , 2004, math/0410083.

[24]  Alison L Gibbs,et al.  On Choosing and Bounding Probability Metrics , 2002, math/0209021.

[25]  Xiaotong Shen Asymptotic Normality of Semiparametric and Nonparametric Posterior Distributions , 2002 .

[26]  T. N. Sriram Asymptotics in Statistics–Some Basic Concepts , 2002 .

[27]  A. V. D. Vaart,et al.  Entropies and rates of convergence for maximum likelihood and Bayes estimation for mixtures of normal densities , 2001 .

[28]  Ying Nian Wu,et al.  Efficient Algorithms for Robust Estimation in Linear Mixed-Effects Models Using the Multivariate t Distribution , 2001 .

[29]  Jon A. Wellner,et al.  Application of convolution theorems in semiparametric models with non-i.i.d. data , 2000 .

[30]  D. Freedman On the Bernstein-von Mises Theorem with Infinite Dimensional Parameters , 1999 .

[31]  L. Wasserman,et al.  The consistency of posterior distributions in nonparametric problems , 1999 .

[32]  Subhashis Ghosal,et al.  Asymptotic normality of posterior distributions in high-dimensional linear models , 1999 .

[33]  J G Ibrahim,et al.  A semiparametric Bayesian approach to the random effects model. , 1998, Biometrics.

[34]  B. Everitt,et al.  Analysis of longitudinal data , 1998, British Journal of Psychiatry.

[35]  S. MacEachern,et al.  A semiparametric Bayesian model for randomised block designs , 1996 .

[36]  A. V. D. Vaart,et al.  Efficient maximum likelihood estimation in semiparametric mixture models , 1996 .

[37]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[38]  W. Wong,et al.  Probability inequalities for likelihood ratios and convergence rates of sieve MLEs , 1995 .

[39]  Adrian F. M. Smith,et al.  Bayesian Analysis of Linear and Non‐Linear Population Models by Using the Gibbs Sampler , 1994 .

[40]  D. Cox An Analysis of Bayesian Inference for Nonparametric Regression , 1993 .

[41]  M. West On scale mixtures of normal distributions , 1987 .

[42]  R. Hogg,et al.  On adaptive estimation , 1984 .

[43]  Albert Y. Lo,et al.  On a Class of Bayesian Nonparametric Estimates: I. Density Estimates , 1984 .

[44]  J. Ware,et al.  Random-effects models for longitudinal data. , 1982, Biometrics.

[45]  R. Beran An Efficient and Robust Adaptive Estimator of Location , 1978 .

[46]  C. R. Henderson,et al.  Best linear unbiased estimation and prediction under a selection model. , 1975, Biometrics.

[47]  C. J. Stone,et al.  Adaptive Maximum Likelihood Estimators of a Location Parameter , 1975 .

[48]  Jerome Sacks,et al.  AN ASYMPTOTICALLY EFFICIENT SEQUENCE OF ESTIMATORS OF A LOCATION PARAMETER , 1975 .

[49]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[50]  L. Schmetterer Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete. , 1963 .

[51]  Soumendu Sundar Mukherjee,et al.  Weak convergence and empirical processes , 2019 .

[52]  A. V. D. Vaart,et al.  CONVERGENCE RATES OF POSTERIOR DISTRIBUTIONS FOR NONIID OBSERVATIONS By , 2018 .

[53]  Van Der Vaart,et al.  UvA-DARE ( Digital Academic Repository ) The Bernstein-Von-Mises theorem under misspecification , 2012 .

[54]  I. Johnstone High dimensional Bernstein-von Mises: simple examples. , 2010, Institute of Mathematical Statistics collections.

[55]  Michael,et al.  On a Class of Bayesian Nonparametric Estimates : I . Density Estimates , 2008 .

[56]  P. Bickel,et al.  SEMIPARAMETRIC INFERENCE AND MODELS , 2005 .

[57]  Alice Richardson,et al.  13 Approaches to the robust estimation of mixed models , 1997 .

[58]  Grace L. Yang,et al.  On Bayes Procedures , 1990 .

[59]  L. Lecam Convergence of Estimates Under Dimensionality Restrictions , 1973 .

[60]  Angus E. Taylor General theory of functions and integration , 1965 .