Universal Rule of Hydrocarbon Oxidation

[1]  J. C. Livengood,et al.  Correlation of autoignition phenomena in internal combustion engines and rapid compression machines , 1955 .

[2]  D. Urban,et al.  Structure of the Soot Growth Region of Laminar Premixed Methane/Oxygen Flames. Appendix I , 2000 .

[3]  A. Douaud,et al.  Four-Octane-Number Method for Predicting the Anti-Knock Behavior of Fuels and Engines , 1978 .

[4]  Ulrich Maas,et al.  New Modeling Approaches Using Detailed Kinetics for Advanced Engines , 2008 .

[5]  C. Westbrook,et al.  A Comprehensive Modeling Study of iso-Octane Oxidation , 2002 .

[6]  H. Ando,et al.  Role of Heat Accumulation by Reaction Loop Initiated by H2O2 Decomposition for Thermal Ignition , 2007 .

[7]  John B. Heywood,et al.  Lean-burn characteristics of a gasoline engine enriched with hydrogen from a plasmatron fuel reformer , 2003 .

[8]  C. Westbrook,et al.  A Comprehensive Modeling Study of n-Heptane Oxidation , 1998 .

[9]  W. S. Affleck,et al.  The controlling role of cool flames in two-stage ignition , 1969 .

[10]  B. Johansson,et al.  Hydrogen Addition For Improved Lean Burn Capability of Slow and Fast Burning Natural Gas Combustion Chambers , 2002 .

[11]  Makoto Ikegami,et al.  A study of the ignition delay of diesel fuel spray using a rapid compression machine. , 1987 .

[12]  H. Ando,et al.  CT1-3: Difference of Reaction Schemes on Low Initial Temperature Conditions with LTO Reactions and High Initial Temperature Conditions Skipping Them(CT: Combustion, Thermal and Fluid Science,General Session Papers) , 2008 .

[13]  Charles K. Westbrook,et al.  Chemical kinetics of hydrocarbon ignition in practical combustion systems , 2000 .