Perturbation theories for the calculation of molecular interaction energies. II. Application to H2
暂无分享,去创建一个
[1] C. Laughlin,et al. Symmetry Adapted Perturbation Theories: Application to a Generalized Eigenvalue Equation for the Hydrogen Molecular Ion , 1971 .
[2] R. Damburg,et al. On One‐Dimensional Model for Exchange Forces , 1971 .
[3] P. Claverie. Theory of intermolecular forces. I. On the inadequacy of the usual Rayleigh‐Schrödinger perturbation method for the treatment of intermolecular forces , 1971 .
[4] C. Rosenthal. Transform for Treating a Wide Class of Perturbation Problems, with Application to the Exchange Equations for H2+ and H2 , 1970 .
[5] C. Rosenthal,et al. An extension of the delta-function model of H+2 - a possible laboratory for studying theories of exchange forces☆ , 1970 .
[6] S. Epstein,et al. Application of exchange perturbation theories to the delta-function model of H+2 , 1969 .
[7] W. A. Sanders. On the Approximate Treatment of Exchange Symmetry in Second‐Order Interaction Energies , 1969 .
[8] J. Hirschfelder,et al. On the modification of exchange perturbation theories , 1968 .
[9] E. Brändas,et al. Dispersion forces, second- and third-order energies☆ , 1968 .
[10] J. Hirschfelder,et al. Exchange and Coulomb Energy of H2 Determined by Various Perturbation Methods , 1968 .
[11] A. Avoird. Wave operator perturbation theory for intermolecular interactions a test on H+2 , 1967 .
[12] D. A. Mcquarrie,et al. Intermediate‐Range Intermolecular Forces in H2+ , 1967 .
[13] W. A. Sanders,et al. Approximate Perturbation Treatment of H2 , 1966 .
[14] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[15] J. Peek. Eigenparameters for the 1sσg and 2pσu Orbitals of H2 , 1965 .
[16] W. D. Lyon,et al. PERTURBATION TREATMENT OF THE GROUND STATE OF HeH$sup +$$sup +$ , 1965 .
[17] C. Herring. CRITIQUE OF THE HEITLER-LONDON METHOD OF CALCULATING SPIN COUPLINGS AT LARGE DISTANCES , 1962 .
[18] P. Robinson. Wave Functions for the Hydrogen Atom in Spheroidal Coordinates II: Interaction with a Point Charge and with a Dipole , 1958 .
[19] A. Dalgarno,et al. An Exact Calculation of Second Order Long Range Forces , 1957 .
[20] A. Dalgarno,et al. A perturbation calculation of properties of the 1sσ and 2pσ states of HeH2+ , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[21] A. Dalgarno,et al. Resonance Forces at Large Separations , 1956 .
[22] R. Sternheimer,et al. ELECTRONIC POLARIZABILITIES OF IONS FROM THE HARTREE-FOCK WAVE FUNCTIONS , 1954 .
[23] A. Erdélyi,et al. Higher Transcendental Functions , 1954 .
[24] C. Coulson. The evaluation of certain integrals occurring in studies of molecular structure , 1937, Mathematical Proceedings of the Cambridge Philosophical Society.
[25] E. Hylleraas. Über den Grundterm der Zweielektronenprobleme von H−, He, Li+, Be++ usw. , 1930 .
[26] A. Unsöld. Quantentheorie des Wasserstoffmolekülions und der Born-Landéschen Abstoßungskräfte , 1927 .
[27] F. London,et al. Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik , 1927 .
[28] B. Jeziorski,et al. Exact calculation of exchange polarization energy for H ion , 1973 .
[29] M. Basilevsky,et al. Intermolecular interactions in the region of small overlap , 1972 .
[30] D. Chipman. The Numerical Computation of Two Transcendental Functions Related to the Exponential Integral , 1972 .
[31] J. Hirschfelder,et al. New Partitioning Perturbation Theory. III. Applications to Electron Exchange , 1970 .
[32] R. J. White. REDUCED GREEN'S FUNCTION FOR THE GROUND STATE OF THE HYDROGEN ATOM. , 1969 .
[33] E. Brändas,et al. Symmetry‐Adapted Second‐Order Energy. Some Comments and Results for H2+ , 1969 .
[34] C. Coulson. II.—The Van der Waals Force between a Proton and a Hydrogen Atom , 1941, Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and Physical Sciences.
[35] W. Heisenberg,et al. Zur Quantentheorie der Molekeln , 1924 .