Perturbation theories for the calculation of molecular interaction energies. II. Application to H2

The many perturbation expansions reviewed in Paper I [D. M. Chipman, J. D. Bowman, and J. O. Hirschfelder, J. Chem. Phys. 59, 0000 (1973)] are applied to the interaction of a ground state hydrogen atom with a proton to form the 1s σg and 2p σu electronic states of H2+. The calculations were made with high precision for the range of separations R = 0.2–15ao using a large basis set of Slater‐type orbitals. For the polarization and symmetrized polarization methods the energies were obtained analytically, these results providing a check on the completeness of the basis set. Also, long range and short range asymptotic formulas are given for the first order wavefunctions and the perturbation energies. The HS and MSMA methods gave the best second order energies. The EL‐HAV second order energy is good at intermediate separations but becomes bad at large separations. The expectation value of the Hamiltonian using the wavefunction truncated after the first order (where the coefficient of the zero order function is ...

[1]  C. Laughlin,et al.  Symmetry Adapted Perturbation Theories: Application to a Generalized Eigenvalue Equation for the Hydrogen Molecular Ion , 1971 .

[2]  R. Damburg,et al.  On One‐Dimensional Model for Exchange Forces , 1971 .

[3]  P. Claverie Theory of intermolecular forces. I. On the inadequacy of the usual Rayleigh‐Schrödinger perturbation method for the treatment of intermolecular forces , 1971 .

[4]  C. Rosenthal Transform for Treating a Wide Class of Perturbation Problems, with Application to the Exchange Equations for H2+ and H2 , 1970 .

[5]  C. Rosenthal,et al.  An extension of the delta-function model of H+2 - a possible laboratory for studying theories of exchange forces☆ , 1970 .

[6]  S. Epstein,et al.  Application of exchange perturbation theories to the delta-function model of H+2 , 1969 .

[7]  W. A. Sanders On the Approximate Treatment of Exchange Symmetry in Second‐Order Interaction Energies , 1969 .

[8]  J. Hirschfelder,et al.  On the modification of exchange perturbation theories , 1968 .

[9]  E. Brändas,et al.  Dispersion forces, second- and third-order energies☆ , 1968 .

[10]  J. Hirschfelder,et al.  Exchange and Coulomb Energy of H2 Determined by Various Perturbation Methods , 1968 .

[11]  A. Avoird Wave operator perturbation theory for intermolecular interactions a test on H+2 , 1967 .

[12]  D. A. Mcquarrie,et al.  Intermediate‐Range Intermolecular Forces in H2+ , 1967 .

[13]  W. A. Sanders,et al.  Approximate Perturbation Treatment of H2 , 1966 .

[14]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[15]  J. Peek Eigenparameters for the 1sσg and 2pσu Orbitals of H2 , 1965 .

[16]  W. D. Lyon,et al.  PERTURBATION TREATMENT OF THE GROUND STATE OF HeH$sup +$$sup +$ , 1965 .

[17]  C. Herring CRITIQUE OF THE HEITLER-LONDON METHOD OF CALCULATING SPIN COUPLINGS AT LARGE DISTANCES , 1962 .

[18]  P. Robinson Wave Functions for the Hydrogen Atom in Spheroidal Coordinates II: Interaction with a Point Charge and with a Dipole , 1958 .

[19]  A. Dalgarno,et al.  An Exact Calculation of Second Order Long Range Forces , 1957 .

[20]  A. Dalgarno,et al.  A perturbation calculation of properties of the 1sσ and 2pσ states of HeH2+ , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[21]  A. Dalgarno,et al.  Resonance Forces at Large Separations , 1956 .

[22]  R. Sternheimer,et al.  ELECTRONIC POLARIZABILITIES OF IONS FROM THE HARTREE-FOCK WAVE FUNCTIONS , 1954 .

[23]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[24]  C. Coulson The evaluation of certain integrals occurring in studies of molecular structure , 1937, Mathematical Proceedings of the Cambridge Philosophical Society.

[25]  E. Hylleraas Über den Grundterm der Zweielektronenprobleme von H−, He, Li+, Be++ usw. , 1930 .

[26]  A. Unsöld Quantentheorie des Wasserstoffmolekülions und der Born-Landéschen Abstoßungskräfte , 1927 .

[27]  F. London,et al.  Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik , 1927 .

[28]  B. Jeziorski,et al.  Exact calculation of exchange polarization energy for H ion , 1973 .

[29]  M. Basilevsky,et al.  Intermolecular interactions in the region of small overlap , 1972 .

[30]  D. Chipman The Numerical Computation of Two Transcendental Functions Related to the Exponential Integral , 1972 .

[31]  J. Hirschfelder,et al.  New Partitioning Perturbation Theory. III. Applications to Electron Exchange , 1970 .

[32]  R. J. White REDUCED GREEN'S FUNCTION FOR THE GROUND STATE OF THE HYDROGEN ATOM. , 1969 .

[33]  E. Brändas,et al.  Symmetry‐Adapted Second‐Order Energy. Some Comments and Results for H2+ , 1969 .

[34]  C. Coulson II.—The Van der Waals Force between a Proton and a Hydrogen Atom , 1941, Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and Physical Sciences.

[35]  W. Heisenberg,et al.  Zur Quantentheorie der Molekeln , 1924 .