Fractional Noether's theorem in the Riesz-Caputo sense

Abstract We prove a Noether’s theorem for fractional variational problems with Riesz–Caputo derivatives. Both Lagrangian and Hamiltonian formulations are obtained. Illustrative examples in the fractional context of the calculus of variations and optimal control are given.

[1]  D. Djukić,et al.  Noether's theorem for optimum control systems , 1973 .

[2]  A. R. El-Nabulsi THE FRACTIONAL CALCULUS OF VARIATIONS FROM EXTENDED ERDÉLYI-KOBER OPERATOR , 2009 .

[3]  Agnieszka B. Malinowska,et al.  Leitmann's direct method of optimization for absolute extrema of certain problems of the calculus of variations on time scales , 2010, Appl. Math. Comput..

[4]  Vu Kim Tuan,et al.  Composition of erdélyi-kober fractional operators , 2000 .

[5]  Delfim F. M. Torres,et al.  Automatic Computation of Conservation Laws in the Calculus of Variations and Optimal Control , 2005 .

[6]  D. Baleanu,et al.  Hamiltonian formulation of classical fields within Riemann–Liouville fractional derivatives , 2005, math-ph/0510030.

[7]  Delfim F. M. Torres,et al.  Fractional conservation laws in optimal control theory , 2007, 0711.0609.

[8]  Jacky Cresson,et al.  Fractional embedding of differential operators and Lagrangian systems , 2006, math/0605752.

[9]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[10]  Delfim F. M. Torres,et al.  Constants of motion for fractional action-like variational problems , 2006, math/0607472.

[11]  Delfim F. M. Torres,et al.  Fractional Optimal Control in the Sense of Caputo and the Fractional Noether's Theorem , 2007, 0712.1844.

[12]  Bader Al-Saqabi,et al.  Explicit solutions of fractional integral and differential equations involving Erdélyi-Kober operators , 1998, Appl. Math. Comput..

[13]  A. R. El-Nabulsi Complexified quantum field theory and “mass without mass” from multidimensional fractional actionlike variational approach with dynamical fractional exponents , 2009 .

[14]  Delfim F. M. Torres On the Noether theorem for optimal control , 2001, 2001 European Control Conference (ECC).

[15]  Delfim F. M. Torres,et al.  Leitmann's direct method for fractional optimization problems , 2010, Appl. Math. Comput..

[16]  Delfim F. M. Torres,et al.  Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives , 2010, 1007.2937.

[17]  A. R. El-Nabulsi ERRATUM: "COMPLEXIFIED FRACTIONAL HEAT KERNEL AND PHYSICS BEYOND THE SPECTRAL TRIPLET ACTION IN NON-COMMUTATIVE GEOMETRY" , 2009 .

[18]  D.Baleanu,et al.  Lagrangians with linear velocities within Riemann-Liouville fractional derivatives , 2004 .

[19]  S. Brendle,et al.  Calculus of Variations , 1927, Nature.

[20]  George Leitmann,et al.  A note on absolute extrema of certain integrals , 1967 .

[21]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .

[22]  V. Kiryakova Generalized Fractional Calculus and Applications , 1993 .

[23]  George Leitmann,et al.  A Direct Method for Open-Loop Dynamic Games for Affine Control Systems , 2005 .

[24]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[25]  Delfim F. M. Torres,et al.  Contrasting Two Transformation-based Methods for Obtaining Absolute Extrema , 2008 .

[26]  Delfim F. M. Torres,et al.  Symbolic computation of variational symmetries in optimal control , 2006 .

[27]  Quasi-Invariant Optimal Control Problems , 2003, math/0302264.

[28]  George Leitmann,et al.  Coordinate Transformation Method for the Extremization of Multiple Integrals , 2005 .

[29]  Georges Zaccour,et al.  Dynamic games : theory and applications , 2005 .

[30]  George Leitmann,et al.  An Extension of the Coordinate Transformation Method for Open-Loop Nash Equilibria , 2004 .

[31]  Delfim F. M. Torres,et al.  Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order (α, β) , 2007 .

[32]  Delfim F. M. Torres Proper extensions of Noether's symmetry theorem for nonsmooth extremals of the calculus of variations , 2004 .

[33]  Om P. Agrawal,et al.  Generalized Euler—Lagrange Equations and Transversality Conditions for FVPs in terms of the Caputo Derivative , 2007 .

[34]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[35]  Agnieszka B. Malinowska,et al.  A fractional calculus of variations for multiple integrals with application to vibrating string , 2010, 1001.2722.

[36]  Om P. Agrawal,et al.  Fractional variational calculus in terms of Riesz fractional derivatives , 2007 .

[37]  Delfim F. M. Torres,et al.  Fractional actionlike variational problems , 2008, 0804.4500.

[38]  Virginia Kiryakova,et al.  A BRIEF STORY ABOUT THE OPERATORS OF THE GENERALIZED FRACTIONAL CALCULUS , 2008 .

[39]  Pierre Cartigny,et al.  An Extension of Leitmann's Direct Method to inequality Constraints , 2004, IGTR.

[40]  Frederick E. Riewe,et al.  Mechanics with fractional derivatives , 1997 .

[41]  George Leitmann On a class of direct optimization problems 1,2 , 2002 .

[42]  Delfim F. M. Torres,et al.  A formulation of Noether's theorem for fractional problems of the calculus of variations , 2007 .

[43]  Delfim F. M. Torres,et al.  Non-conservative Noether's theorem for fractional action-like variational problems with intrinsic and observer times , 2007, 0711.0645.

[44]  George Leitmann,et al.  Some Extensions to a Direct Optimization Method , 2001 .

[45]  Delfim F. M. Torres,et al.  Conservation laws for invariant functionals containing compositions , 2007, IFAC Proceedings Volumes.

[46]  Delfim F. M. Torres Conservation Laws in Optimal Control , 2002 .

[47]  G. Leitmann,et al.  On a Class of Direct Optimization Problems , 2001 .

[48]  Delfim F. M. Torres,et al.  Absolute Extrema of Invariant Optimal Control Problems , 2006 .

[49]  J. Brown What is Applied Mathematics? , 1997 .