Non-stationary photodetection shot noise in frequency combs: a signal processing perspective

[1]  S. Kasap Optoelectronics and Photonics: Principles and Practices , 2001 .

[2]  Sakae Kawato,et al.  A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator. , 2010, Optics express.

[3]  A. Javan,et al.  Frequency Characteristics of a Continuous-Wave He–Ne Optical Maser , 1962 .

[4]  Theodor W. Hänsch,et al.  Absolute optical frequency measurement of the cesium D 2 line , 2000 .

[5]  M. Dagenais,et al.  Effects of high space-charge fields on the response of microwave photodetectors , 1994, IEEE Photonics Technology Letters.

[6]  Guy-Bart Stan,et al.  Comparison of different impulse response measurement techniques , 2002 .

[7]  E. A. Curtis,et al.  Direct comparison of two cold-atom-based optical frequency standards by using a femtosecond-laser comb. , 2001, Optics letters.

[8]  J. Diels,et al.  Stabilization of femtosecond lasers for optical frequency metrology and direct optical to radio frequency synthesis. , 2001, Physical review letters.

[9]  Michel Tetu,et al.  Characterization of Frequency Stability: Effect of RF Filtering , 1985, IEEE Transactions on Instrumentation and Measurement.

[10]  Brandon Botzer,et al.  Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb. , 2012, Optics express.

[11]  T. Hänsch Nobel Lecture: Passion for precision* , 2006 .

[12]  Ursula Keller,et al.  Fully stabilized optical frequency comb with sub-radian CEO phase noise from a SESAM-modelocked 1.5-µm solid-state laser. , 2011, Optics express.

[13]  Etienne Perret,et al.  Group-Delay Engineered Noncommensurate Transmission Line All-Pass Network for Analog Signal Processing , 2010, IEEE Transactions on Microwave Theory and Techniques.

[14]  H Wang,et al.  Wavelength-tunable amplitude-squeezed light from a room-temperature quantum-well laser. , 1993, Optics letters.

[15]  Jun Ye,et al.  Optical frequency comb with submillihertz linewidth and more than 10 W average power , 2008 .

[16]  Jean-Daniel Deschênes,et al.  Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry. , 2010, Optics express.

[17]  G Santarelli,et al.  Optical-fiber pulse rate multiplier for ultralow phase-noise signal generation. , 2011, Optics letters.

[18]  W. Gardner The spectral correlation theory of cyclostationary time-series , 1986 .

[19]  Jun Ye,et al.  Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 microm. , 2009, Optics letters.

[20]  J. Genest,et al.  Heterodyne beats between a continuous-wave laser and a frequency comb beyond the shot-noise limit of a single comb mode , 2013 .

[21]  Leo W. Hollberg,et al.  Low-noise synthesis of microwave signals from an optical source , 2005 .

[22]  Hall,et al.  Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis , 2000, Science.

[23]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[24]  P. Maddaloni,et al.  Absolute frequency measurement of molecular transitions by a direct link to a comb generated around 3-µm , 2008 .

[25]  M. Akbulut,et al.  A Semiconductor-Based 10-GHz Optical Comb Source With Sub 3-fs Shot-Noise-Limited Timing Jitter and $\sim$500-Hz Comb Linewidth , 2010, IEEE Photonics Technology Letters.

[26]  Shot-noise formula for time-varying photon rates: a general derivation , 1997 .

[27]  Winkler,et al.  Nonstationary shot noise and its effect on the sensitivity of interferometers. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[28]  Min Xiao,et al.  Sub-Shot-Noise-Limited Optical Heterodyne Detection Using an Amplitude-Squeezed Local Oscillator , 1999 .

[29]  Antonio Napolitano,et al.  Cyclostationarity: Half a century of research , 2006, Signal Process..

[30]  Leo W. Hollberg,et al.  Analysis of noise mechanisms limiting frequency stability of microwave signals generated with a femtosecond laser , 2002, Proceedings of the 2002 IEEE International Frequency Control Symposium and PDA Exhibition (Cat. No.02CH37234).

[31]  M. Kirchner,et al.  Generation of ultrastable microwaves via optical frequency division , 2011, 1101.3616.

[32]  H. Tsuchida Generation of amplitude-squeezed light at 431 nm from a singly resonant frequency doubler. , 1995, Optics letters.

[33]  S. Adachi The Handbook on Optical Constants of Semiconductors:In Tables and Figures , 2012 .

[34]  S. Diddams,et al.  Analysis of shot noise in the detection of ultrashort optical pulse trains , 2013 .

[35]  M. Ablowitz,et al.  Noise-induced linewidth in frequency combs. , 2006, Optics letters.

[36]  A. Weiner,et al.  Improved signal-to-noise ratio of 10 GHz microwave signals generated with a mode-filtered femtosecond laser frequency comb. , 2009, Optics express.

[37]  Theodor W. Hänsch,et al.  Measuring the frequency of light with mode-locked lasers , 1999 .

[38]  Kimble,et al.  Precision measurement beyond the shot-noise limit. , 1987, Physical review letters.

[39]  O. Prochnow,et al.  Quantum-limited noise performance of a femtosecond all-fiber ytterbium laser. , 2009, Optics express.

[40]  G. Lucovsky,et al.  Transit-time considerations in p-i-n diodes. , 1964 .

[41]  Scott A. Diddams,et al.  Photonic microwave generation with high-power photodiodes , 2013 .

[42]  Rüdiger Paschotta,et al.  Noise of mode-locked lasers (Part II): timing jitter and other fluctuations , 2004 .

[43]  U. Keller,et al.  Self-referencable frequency comb from a 170-fs, 1.5-μm solid-state laser oscillator , 2010 .

[44]  M. E. Barnett Detection of Optical and Infrared Radiation , 1979 .

[45]  A. Theodore Forrester,et al.  Photoelectric Mixing As a Spectroscopic Tool , 1961 .

[46]  Thomas Udem,et al.  Optical frequency standards and measurements , 2001 .

[47]  Jun Ye,et al.  Remote transfer of ultrastable frequency references via fiber networks. , 2007, The Review of scientific instruments.

[48]  William C Swann,et al.  High-performance, vibration-immune, fiber-laser frequency comb. , 2009, Optics letters.

[49]  C R Menyuk,et al.  The quantum-limited comb lineshape of a mode-locked laser: fundamental limits on frequency uncertainty. , 2008, Optics express.

[50]  T. Ralph,et al.  Squeezed light from second-harmonic generation: experiment versus theory. , 1995, Optics letters.

[51]  M. A. Duguay,et al.  Ultrahigh-speed photography of picosecond light pulses , 1971 .

[52]  G Leuchs,et al.  Sub-shot-noise phase quadrature measurement of intense light beams. , 2004, Optics letters.

[53]  W. Riley,et al.  Handbook of frequency stability analysis , 2008 .

[54]  Hirokazu Matsumoto,et al.  Frequency metrology with a turnkey all-fiber system , 2004 .

[55]  R. H. Brown,et al.  Correlation between Photons in two Coherent Beams of Light , 1956, Nature.

[56]  K. Cossel,et al.  Ultrabroadband coherent supercontinuum frequency comb , 2011, 1105.2093.

[57]  H. Roder Effects of Tuned Circuits upon a Frequency Modulated Signal , 1937, Proceedings of the Institute of Radio Engineers.

[58]  M. Kirchner,et al.  Ultralow phase noise microwave generation with an Er:fiber-based optical frequency divider. , 2011, Optics letters.

[59]  Leo W. Hollberg,et al.  Design and control of femtosecond lasers for optical clocks and the synthesis of low-noise optical and microwave signals , 2003 .

[60]  Michel Tetu,et al.  Frequency stability characterization from the filtered signal of a precision oscillator in the presence of additive noise , 1989 .

[61]  L. Hollberg,et al.  Noise properties of microwave signals synthesized with femtosecond lasers , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[62]  B. Sinha,et al.  Statistical Meta-Analysis with Applications , 2008 .

[63]  William C. Swann,et al.  Low-noise fiber-laser frequency combs , 2007 .

[64]  Motoichi Ohtsu,et al.  12-THz frequency difference measurements and noise analysis of an optical frequency comb in optical fibers , 1999 .

[65]  E. Bedrosian,et al.  Distortion and crosstalk of linearly filtered, angle-modulated signals , 1968 .

[66]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[67]  Peter J. Delfyett,et al.  Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources , 2009 .

[68]  V. Chan,et al.  Noise in homodyne and heterodyne detection. , 1983, Optics letters.

[69]  A. Hati,et al.  Sub-femtosecond absolute timing jitter with a 10 GHz hybrid photonic-microwave oscillator , 2012 .

[70]  K. Gao,et al.  Hertz-level measurement of the Ca-40(+) 4s S-2(1/2)-3d D-2(5/2) clock transition frequency with respect to the SI second through the Global Positioning System , 2011, 1111.5174.

[71]  Günter Steinmeyer,et al.  Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation , 1999 .

[72]  S. Diddams,et al.  Exploiting shot noise correlations in the photodetection of ultrashort optical pulse trains , 2013, 1302.6206.

[73]  Hirokazu Matsumoto,et al.  Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb. , 2006, Optics express.

[74]  J. L. Hall,et al.  Optical frequency measurement across a 104-THz gap with a femtosecond laser frequency comb. , 2000, Optics letters.

[75]  M. Lours,et al.  Amplitude to phase conversion of InGaAs pin photo-diodes for femtosecond lasers microwave signal generation , 2011, 1104.4495.

[76]  A. Gaeta,et al.  Excess noise generation during spectral broadening in a microstructured fiber , 2003 .

[77]  G. Burdge,et al.  The linewidth of a mode-locked semiconductor laser caused by spontaneous emission: Experimental comparison to single-mode operation , 1986 .

[78]  Albrecht Bartels,et al.  Offset frequency dynamics and phase noise properties of a self-referenced 10 GHz Ti:sapphire frequency comb. , 2011, Optics express.