A theory of biological relativity: no privileged level of causation

Must higher level biological processes always be derivable from lower level data and mechanisms, as assumed by the idea that an organism is completely defined by its genome? Or are higher level properties necessarily also causes of lower level behaviour, involving actions and interactions both ways? This article uses modelling of the heart, and its experimental basis, to show that downward causation is necessary and that this form of causation can be represented as the influences of initial and boundary conditions on the solutions of the differential equations used to represent the lower level processes. These insights are then generalized. A priori, there is no privileged level of causation. The relations between this form of ‘biological relativity’ and forms of relativity in physics are discussed. Biological relativity can be seen as an extension of the relativity principle by avoiding the assumption that there is a privileged scale at which biological functions are determined.

[1]  David Gavaghan,et al.  Generation of histo-anatomically representative models of the individual heart: tools and application , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[2]  D. Noble,et al.  Rectifying Properties of Heart Muscle , 1960, Nature.

[3]  T. Cavalier-smith,et al.  Membrane heredity and early chloroplast evolution. , 2000, Trends in plant science.

[4]  E. Davidson The Regulatory Genome: Gene Regulatory Networks In Development And Evolution , 2006 .

[5]  J. Wambsganss,et al.  Singularity Theory and Gravitational Lensing , 2001 .

[6]  F. Gzil Introduction à l'étude de la médecine expérimentale , 2008 .

[7]  Felipe Aguel,et al.  Computer simulations of cardiac defibrillation: a look inside the heart , 2002 .

[8]  John Launer Rhythms of life , 2002 .

[9]  Eric H Davidson,et al.  Modeling DNA sequence-based cis-regulatory gene networks. , 2002, Developmental biology.

[10]  D. Noble,et al.  Electrical properties of cardiac muscle attributable to inward going (anomalous) rectification , 1965 .

[11]  H. Spemann,et al.  über Induktion von Embryonalanlagen durch Implantation artfremder Organisatoren , 1924, Archiv für mikroskopische Anatomie und Entwicklungsmechanik.

[12]  H. Huxley Fifty years of muscle and the sliding filament hypothesis. , 2004, European journal of biochemistry.

[13]  Andrew J. Pullan,et al.  An Anatomically Based Model of Transient Coronary Blood Flow in the Heart , 2002, SIAM J. Appl. Math..

[14]  Eric H Davidson,et al.  A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo. , 2002, Developmental biology.

[15]  Martin J Bishop,et al.  Soft Tissue Modelling of Cardiac Fibres for Use in Coupled Mechano-Electric Simulations , 2007, Bulletin of mathematical biology.

[16]  Denis Noble,et al.  Genome Size and Numbers of Biological Functions , 2005, Trans. Comp. Sys. Biology.

[17]  Denis Noble,et al.  Biophysics and systems biology , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  R L Winslow,et al.  Generation and propagation of ectopic beats induced by spatially localized Na–K pump inhibition in atrial network models , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[19]  J. Shapiro,et al.  Revisiting the Central Dogma in the 21st Century , 2009, Annals of the New York Academy of Sciences.

[20]  D DiFrancesco,et al.  Reciprocal role of the inward currents ib, Na and if in controlling and stabilizing pacemaker frequency of rabbit sino-atrial node cells , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[21]  B. Mcclintock,et al.  The significance of responses of the genome to challenge. , 1984, Science.

[22]  K Sander,et al.  Introducing the Spemann-Mangold organizer: experiments and insights that generated a key concept in developmental biology. , 2001, The International journal of developmental biology.

[23]  S. Brenner Sequences and consequences , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[24]  P. Anderson More is different. , 1972, Science.

[25]  D. Noble Claude Bernard, the first systems biologist, and the future of physiology , 2008, Experimental physiology.

[26]  Karl Deisseroth,et al.  Signaling from synapse to nucleus: the logic behind the mechanisms , 2003, Current Opinion in Neurobiology.

[27]  Charles Auffray,et al.  Scale relativity theory and integrative systems biology: 2. Macroscopic quantum-type mechanics. , 2008, Progress in biophysics and molecular biology.

[28]  Michel Bitbol Downward causation without foundations , 2010, Synthese.

[29]  Denis Noble,et al.  The Cardiac Physiome: perspectives for the future , 2009, Experimental physiology.

[30]  H T Siegelmann,et al.  Dating and Context of Three Middle Stone Age Sites with Bone Points in the Upper Semliki Valley, Zaire , 2007 .

[31]  N. Trayanova,et al.  Shock-induced arrhythmogenesis in the myocardium. , 2002, Chaos.

[32]  A. Tanskanen,et al.  A simplified local control model of calcium-induced calcium release in cardiac ventricular myocytes. , 2004, Biophysical journal.

[33]  Robert P. St.Onge,et al.  The Chemical Genomic Portrait of Yeast: Uncovering a Phenotype for All Genes , 2008, Science.

[34]  F. Crick On protein synthesis. , 1958, Symposia of the Society for Experimental Biology.

[35]  Joseph L Greenstein,et al.  Protein geometry and placement in the cardiac dyad influence macroscopic properties of calcium-induced calcium release. , 2007, Biophysical journal.

[36]  F. Jacob,et al.  La logique du vivant. Une histoire de l'hérédité@@@La logique du vivant. Une histoire de l'heredite , 1979 .

[37]  Steve Horvath,et al.  Molecular Systems Biology 5; Article number 291; doi:10.1038/msb.2009.46 Citation: Molecular Systems Biology 5:291 , 2022 .

[38]  P. Hunter,et al.  Computational mechanics of the heart : From tissue structure to ventricular function , 2000 .

[39]  E. D. Robertis,et al.  Spemann's organizer and self-regulation in amphibian embryos , 2006, Nature Reviews Molecular Cell Biology.

[40]  Laurent Nottale,et al.  Fractal Space-Time And Microphysics: Towards A Theory Of Scale Relativity , 1993 .

[41]  W. Cannon The Wisdom of the Body , 1932 .

[42]  Denis Noble,et al.  Dimensionality in cardiac modelling. , 2005, Progress in biophysics and molecular biology.

[43]  Denis Noble,et al.  Simulating cardiac sinus and atrial network dynamics on the Connection Machine , 1993 .

[44]  T. M. Sonneborn,et al.  Gene action in development , 1970, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[45]  J. Monod,et al.  Teleonomic mechanisms in cellular metabolism, growth, and differentiation. , 1961, Cold Spring Harbor symposia on quantitative biology.

[46]  Laurent Nottale,et al.  Scale Relativity and Fractal Space-Time: A New Approach to Unifying Relativity and Quantum Mechanics , 2011 .

[47]  Wei Hu,et al.  Cytoplasmic Impact on Cross-Genus Cloned Fish Derived from Transgenic Common Carp (Cyprinus carpio) Nuclei and Goldfish (Carassius auratus) Enucleated Eggs1 , 2005, Biology of reproduction.

[48]  The International HapMap Consortium,et al.  A physical map of the human genome , 2001 .

[49]  R L Winslow,et al.  Multi-scale models of local control of calcium induced calcium release. , 2006, Progress in biophysics and molecular biology.

[50]  H. T. ter Keurs,et al.  Modelling and measuring electromechanical coupling in the rat heart , 2009, Experimental physiology.

[51]  Denis Noble,et al.  Differential and integral views of genetics in computational systems biology , 2011, Interface Focus.

[52]  A. Huxley Muscle structure and theories of contraction. , 1957, Progress in biophysics and biophysical chemistry.

[53]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990 .

[54]  Jacques Monod,et al.  [The operon: a group of genes with expression coordinated by an operator. C.R.Acad. Sci. Paris 250 (1960) 1727-1729]. , 2005, Comptes rendus biologies.

[55]  Liancheng Wang,et al.  Global Dynamics of an SEIR Epidemic Model with Vertical Transmission , 2001, SIAM J. Appl. Math..

[56]  P. Hunter,et al.  Computational Mechanics of the Heart , 2000 .

[57]  D. Noble,et al.  A model of sino-atrial node electrical activity based on a modification of the DiFrancesco-Noble (1984) equations , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[58]  A. Einstein LENS-LIKE ACTION OF A STAR BY THE DEVIATION OF LIGHT IN THE GRAVITATIONAL FIELD. , 1936, Science.

[59]  François Jacob The possible and the actual , 1982 .

[60]  A V Holden,et al.  Computer simulation of re-entry sources in myocardium in two and three dimensions. , 1993, Journal of theoretical biology.

[61]  F. Crick Central Dogma of Molecular Biology , 1970, Nature.

[62]  D. Mccormick Sequence the Human Genome , 1986, Bio/Technology.

[63]  Denis Noble,et al.  Genes and causation , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[64]  D. Noble A modification of the Hodgkin—Huxley equations applicable to Purkinje fibre action and pacemaker potentials , 1962, The Journal of physiology.

[65]  Peter L. M. Kerkhof,et al.  Quantifying ventricular fibrillation: in silico research and clinical implications , 2004, IEEE Transactions on Biomedical Engineering.

[66]  D. Noble Cardiac Action and Pacemaker Potentials based on the Hodgkin-Huxley Equations , 1960, Nature.

[67]  D. Noble,et al.  Systems biology and the virtual physiological human , 2009, Molecular systems biology.

[68]  C. Auffray,et al.  Scale relativity theory and integrative systems biology: 1. Founding principles and scale laws. , 2008, Progress in biophysics and molecular biology.

[69]  A V Panfilov,et al.  Generation of Reentry in Anisotropic Myocardium , 1993, Journal of cardiovascular electrophysiology.

[70]  Enrico Coen,et al.  The Art of Genes , 1999 .

[71]  R. Lewontin The Genetic Basis of Evolutionary Change , 1974 .

[72]  D. Noble From the Hodgkin–Huxley axon to the virtual heart , 2007, The Journal of physiology.

[73]  T. Cavalier-smith,et al.  The Membranome and Membrane Heredity in Development and Evolution , 2004 .

[74]  James A. Shapiro,et al.  Evolution: A View from the 21st Century , 2011 .

[75]  D. Noble The music of life : biology beyond genes , 2008 .

[76]  T. G. Coleman,et al.  Circulation: overall regulation. , 1972, Annual review of physiology.

[77]  F. Jacob,et al.  L'opéron : groupe de gènes à expression coordonnée par un opérateur [C. R. Acad. Sci. Paris 250 (1960) 1727–1729] , 2005 .

[78]  Paul F. Cranefield,et al.  Claude Bernard's revised edition of his Introduction à l'étude de la médecine expérimentale , 1977, Medical History.

[79]  D. Noble,et al.  Systems Biology: An Approach , 2010, Clinical pharmacology and therapeutics.

[80]  Denis Noble,et al.  Neo‐Darwinism, the Modern Synthesis and selfish genes: are they of use in physiology? , 2011, The Journal of physiology.