On the topology of the level sets of a scalar field
暂无分享,去创建一个
[1] Jack Snoeyink,et al. Computing contour trees in all dimensions , 2000, SODA '00.
[2] Jesse Freeman,et al. in Morse theory, , 1999 .
[3] Bernd Hamann,et al. Fast methods for computing isosurface topology with Betti numbers , 2003, Data Visualization: The State of the Art.
[4] R. Smullyan. ANNALS OF MATHEMATICS STUDIES , 1961 .
[5] Mikhail N. Vyalyi,et al. Construction of contour trees in 3D in O(n log n) steps , 1998, SCG '98.
[6] Herbert Edelsbrunner,et al. An incremental algorithm for Betti numbers of simplicial complexes on the 3-sphere , 1995, Comput. Aided Geom. Des..
[7] Valerio Pascucci,et al. The contour spectrum , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).
[8] Herbert Edelsbrunner,et al. Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.
[9] Valerio Pascucci,et al. Contour trees and small seed sets for isosurface traversal , 1997, SCG '97.
[10] Valerio Pascucci,et al. Hypervolume visualization: a challenge in simplicity , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).