Electromagnetic levitation containerless processing of metallic materials in microgravity: thermophysical properties

[1]  K. Samwer,et al.  Examining the influence of turbulence on viscosity measurements of molten germanium under reduced gravity , 2022, npj Microgravity.

[2]  S. Schneider,et al.  Dynamic Nucleation in Sub-Critically Undercooled Melts During Electromagnetic Levitation , 2022, SSRN Electronic Journal.

[3]  S. Levin,et al.  Models with higher effective dimensions tend to produce more uncertain estimates , 2022, Science advances.

[4]  X. D. Wang,et al.  Correlation Between Viscosity and Local Atomic Structure in Liquid Zr56Co28Al16 Alloy , 2022, Microgravity Science and Technology.

[5]  F. Palm,et al.  Influence of Surface Tension and Evaporation on Melt Dynamics of Aluminum Alloys for Laser Powder Bed Fusion , 2022, Journal of Materials Engineering and Performance.

[6]  D. Matson,et al.  Impact of convection on the damping of an oscillating droplet during viscosity measurement using the ISS-EML facility , 2021, NPJ microgravity.

[7]  K. Kelton,et al.  Demonstration of the effect of stirring on nucleation from experiments on the International Space Station using the ISS-EML facility , 2021, NPJ microgravity.

[8]  H. Fecht,et al.  Investigating Thermophysical Properties Under Microgravity: A Review , 2020, Advanced Engineering Materials.

[9]  D. Hofmann,et al.  Thermophysical Properties of an Fe57.75Ni19.25Mo10C5B8 Glass‐Forming Alloy Measured in Microgravity , 2020, Advanced Engineering Materials.

[10]  J. Brillo,et al.  Relation between excess volume, excess free energy and isothermal compressibility in liquid alloys , 2020 .

[11]  D. Matson,et al.  Tracking Evaporation During Levitation Processing of Nickel-Based Superalloys on the ISS , 2020, JOM.

[12]  H. Fecht,et al.  Confirmation of Anomalous Nucleation in Zirconium , 2020, JOM.

[13]  C. Zheng,et al.  Determining Thermophysical Properties of Normal and Metastable Liquid Zr-Fe Alloys by Electrostatic Levitation Method , 2020, Metallurgical and Materials Transactions A.

[14]  H. Fecht,et al.  Precise Measurements of Thermophysical Properties of Liquid Ti–6Al–4V (Ti64) Alloy On Board the International Space Station , 2020, Advanced Engineering Materials.

[15]  K. Samwer,et al.  Thermophysical properties of a Si50Ge50 melt measured on board the International Space Station , 2020, npj Microgravity.

[16]  D. Matson,et al.  MHD surrogate model for convection in electromagnetically levitated molten metal droplets processed using the ISS-EML facility , 2020, npj Microgravity.

[17]  Jianzhong Jiang,et al.  The relationship between viscosity and local structure in liquid zirconium via electromagnetic levitation and molecular dynamics simulations , 2020 .

[18]  Yue Dong,et al.  Thermophysical Properties of Advanced Ni‐Based Superalloys in the Liquid State Measured on Board the International Space Station , 2019, Advanced Engineering Materials.

[19]  K. Kelton,et al.  Predicting metallic glass formation from properties of the high temperature liquid , 2019 .

[20]  Lianyi Chen,et al.  Correlation of viscosity with atomic packing in Cu50Zr50 melt , 2019, Journal of Molecular Liquids.

[21]  D. Hofmann,et al.  Thermophysical properties of liquid Zr52.5Cu17.9Ni14.6Al10Ti5—prospects for bulk metallic glass manufacturing in space , 2019, npj Microgravity.

[22]  Fan Yang,et al.  Long-Range Mass Transport during Structural Transitions in Metallic Glass-Forming Melts. , 2019, Physical review letters.

[23]  D. Matson,et al.  Surrogate model for convective flow inside electromagnetically levitated molten droplet using magnetohydrodynamic simulation and feature analysis , 2019, International Journal of Heat and Mass Transfer.

[24]  D. Matson,et al.  Numerical representations for flow velocity and shear rate inside electromagnetically levitated droplets in microgravity , 2019, npj Microgravity.

[25]  W. Johnson,et al.  Surface tension and viscosity of liquid Pd43Cu27Ni10P20 measured in a levitation device under microgravity , 2019, npj Microgravity.

[26]  Jianzhong Jiang,et al.  Surface Tension and Viscosity of Cu50Zr50 Measured by the Oscillating Drop Technique on Board the International Space Station , 2019, Microgravity Science and Technology.

[27]  G. Lohöfer High-resolution inductive measurement of electrical resistivity and density of electromagnetically levitated liquid metal droplets. , 2018, The Review of scientific instruments.

[28]  H. Woodrow,et al.  : A Review of the , 2018 .

[29]  D. Matson,et al.  Deformation induced frequency shifts of oscillating droplets during molten metal surface tension measurement , 2018, Applied Physics Letters.

[30]  Hans-Jörg Fecht,et al.  Fundamentals of Liquid Processing in Low Earth Orbit: From Thermophysical Properties to Microstructure Formation in Metallic Alloys , 2017 .

[31]  S. Schneider,et al.  Use of Thermophysical Properties to Select and Control Convection During Rapid Solidification of Steel Alloys Using Electromagnetic Levitation on the Space Station , 2017 .

[32]  Douglas M. Matson,et al.  Thermophysical Property Measurement: A Call to Action , 2016 .

[33]  D. Matson,et al.  Preliminary Experiments Using Electromagnetic Levitation On the International Space Station , 2016 .

[34]  J. Brillo Thermophysical Properties of Multicomponent Liquid Alloys , 2016 .

[35]  M. Stolpe,et al.  Structural changes during a liquid-liquid transition in the deeply undercooled Zr58.5Cu15.6Ni12.8Al10.3Nb2.8 bulk metallic glass forming melt , 2016 .

[36]  R. Guthrie,et al.  The Thermophysical Properties of Metallic Liquids: Volume 1: Fundamentals , 2015 .

[37]  Stephan Schneider,et al.  The Electro-Magnetic Levitator (EML) On Board the ISS - An Overview and Outlook , 2015 .

[38]  D. Matson,et al.  Measurement of Density of Fe-Co Alloys Using Electrostatic Levitation , 2015, Metallurgical and Materials Transactions B.

[39]  D. Matson,et al.  Prediction of Mass Evaporation of $$\mathrm{Fe}_{50}\mathrm{Co} _{50}$$Fe50Co50 During Measurements of Thermophysical Properties Using an Electrostatic Levitator , 2014 .

[40]  W. Rhim,et al.  Materials properties measurements and particle beam interactions studies using electrostatic levitation , 2014 .

[41]  K. Kelton,et al.  Correlation between kinetic strength, volumetric properties, and glass forming ability in metallic liquids , 2013 .

[42]  R. Busch,et al.  High temperature melt viscosity and fragile to strong transition in Zr–Cu–Ni–Al–Nb(Ti) and Cu47Ti34Zr11Ni8 bulk metallic glasses , 2012 .

[43]  Douglas M. Matson,et al.  Phase selection in the mushy-zone: LODESTARS and ELFSTONE projects , 2011 .

[44]  A Seidel,et al.  EML - an electromagnetic levitator for the International Space Station , 2011 .

[45]  J. Brillo,et al.  Relation between self-diffusion and viscosity in dense liquids: new experimental results from electrostatic levitation. , 2011, Physical review letters.

[46]  T. Unruh,et al.  Neutron scattering experiments on liquid droplets using electrostatic levitation , 2011 .

[47]  R. Busch,et al.  Equilibrium viscosity of Zr–Cu–Ni–Al–Nb bulk metallic glasses , 2010 .

[48]  Kenneth C. Mills,et al.  Calculation of Thermophysical Properties of Ni-based Superalloys , 2006 .

[49]  S. Schneider,et al.  Thermophysical property measurements of liquid metals by electromagnetic levitation , 2006 .

[50]  S. Schneider,et al.  The oscillating drop technique revisited , 2005 .

[51]  E. Lavernia,et al.  Viscous flow of the Pd43Ni10Cu27P20 bulk metallic glass-forming liquid , 2004 .

[52]  G. Trápaga,et al.  Laminar-turbulent transition in an electromagnetically levitated droplet , 2003 .

[53]  I. Egry,et al.  Electrical Resistivity of Undercooled Liquid Cu-Ni Alloys , 2002 .

[54]  G. Lohöfer,et al.  The new ISS electromagnetic levitation facility: MSL - EML , 2002 .

[55]  W. Johnson,et al.  Thermodynamics of Cu47Ti34Zr11Ni8, Zr52.5Cu17.9Ni14.6Al10Ti5 and Zr57Cu15.4Ni12.6Al10Nb5 bulk metallic glass forming alloys , 2000 .

[56]  W. Rhim,et al.  Thermophysical properties of zirconium at high temperature , 1999 .

[57]  I. Egry Properties, Nucleation and Growth of Undercooled Liquid Metals: Results of the TEMPUS MSL-1 Mission (特集 MSL-1(1)) , 1998 .

[58]  C. Angell,et al.  Formation of Glasses from Liquids and Biopolymers , 1995, Science.

[59]  Paul C. Nordine,et al.  Aero‐acoustic levitation: A method for containerless liquid‐phase processing at high temperatures , 1994 .

[60]  J. Szekely,et al.  An improved computational technique for calculating electromagnetic forces and power absorptions generated in spherical and deformed body in levitation melting devices , 1992 .

[61]  Hans-Jörg Fecht,et al.  A conceptual approach for noncontact calorimetry in space , 1991 .

[62]  E. H. Trinh,et al.  Compact acoustic levitation device for studies in fluid dynamics and material science in the laboratory and microgravity , 1985 .

[63]  H. Lamb On the Oscillations of a Viscous Spheroid , 1881 .

[64]  Metallurgy in Space: Recent Results from ISS , 2022, The Minerals, Metals & Materials Series.

[65]  T. Ishikawa,et al.  Density of molten gadolinium oxide measured with the electrostatic levitation furnace in the International Space Station , 2020 .

[66]  D. Matson,et al.  Effect of mass evaporation on measurement of liquid density of Ni-based superalloys using ground and space levitation techniques , 2020 .

[67]  Un Desa Transforming our world : The 2030 Agenda for Sustainable Development , 2016 .

[68]  Yan Wang UNCERTAINTY IN MATERIALS MODELING, SIMULATION, AND DEVELOPMENT FOR ICME , 2015 .

[69]  Takehiko Ishikawa,et al.  Towards Microgravity Experiments Using the Electrostatic Levitation Furnace (ELF) in the International Space Station (ISS) , 2014 .

[70]  D. Matson,et al.  Prediction of Mass Evaporation of Fe 50 Co 50 During Measurements of Thermophysical Properties Using an Electrostatic Levitator , 2014 .

[71]  Uncertainty of measurement — Part 3 : Guide to the expression of uncertainty in measurement ( GUM : 1995 ) Supplement 2 : Extension to any number of output quantities , 2011 .

[72]  D. U. Furrer,et al.  Metals process simulation , 2010 .

[73]  L. Varga,et al.  Thermal behavior and melt fragility number of Cu100-x Zrx glassy alloys in terms of crystallization and viscous flow , 2009 .

[74]  I. Egry,et al.  EML Processing Measurement Techniques , 2008 .

[75]  C. Angell Formation of Glasses from Liquids and Biopolymers C , 2005 .

[76]  R. Brooks,et al.  THE SENSITIVITY OF INVESTMENT CASTING SIMULATIONS TO THE ACCURACY OF THERMOPHYSICAL PROPERTY VALUES , 2004 .

[77]  S. Schneider,et al.  Viskositäten unterkühlter Metallschmelzen , 2002 .

[78]  A. L. Greer,et al.  Containerless processing in the study of metallic melts and their solidification , 1993 .

[79]  E. Iso Guide to the Expression of Uncertainty in Measurement , 1993 .

[80]  I. Egry,et al.  TEMPUS : a facility for measuring the thermophysical properties of undercooled liquid metals , 1991 .

[81]  K. Kelton Crystal Nucleation in Liquids and Glasses , 1991 .

[82]  D. Hay,et al.  Call for action. , 1971, Nursing mirror and midwives journal.

[83]  L. Rayleigh On the Capillary Phenomena of Jets , 1879 .